Plastic NPN Silicon High-Voltage Power Transistors

These devices are designed for use in line-operated equipment such as audio output amplifiers; low-current, high-voltage converters; and AC line relays.

Features

- Excellent DC Current Gain
- High Current-Gain Bandwidth Product
- These Devices are Pb-Free and are RoHS Compliant*

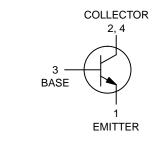
MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
Collector–Emitter Voltage 2N5655G 2N5657G	V _{CEO}	250 350	Vdc
Collector–Base Voltage 2N5655G 2N5657G	V _{CB}	275 375	Vdc
Emitter-Base Voltage	V _{EB}	6.0	Vdc
Collector Current – Continuous	I _C	0.5	Adc
Collector Current – Peak	I _{CM}	1.0	Adc
Base Current	I _B	1.0	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	20 0.16	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C/W

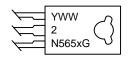
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Indicates JEDEC registered data.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	6.25	°C/W

ON Semiconductor®


http://onsemi.com

0.5 AMPERE POWER TRANSISTORS NPN SILICON 250-350 VOLTS, 20 WATTS

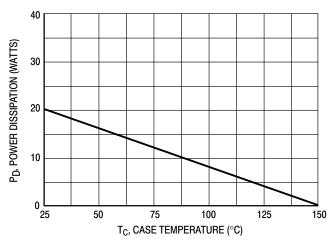
MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping
2N5655G	TO-225 (Pb-Free)	500 Units / Bulk
2N5657G	TO-225 (Pb-Free)	500 Units / Bulk

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS ($T_C = 25$ °C unless otherwise noted) (Note 2)


Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			1	•
Collector–Emitter Sustaining Voltage (I _C = 100 mAdc (inductive), L = 50 mH) 2N5655G 2N5657G	VCEO(sus)	250 350	_ _	Vdc
Collector–Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0) 2N5655G 2N5657G	V _(BR) CEO	250 350	- -	Vdc
Collector Cutoff Current $(V_{CE} = 150 \text{ Vdc}, I_B = 0)$ 2N5655G $(V_{CE} = 250 \text{ Vdc}, I_B = 0)$ 2N5657G	ICEO	-	0.1	mAdc
Collector Cutoff Current $ (V_{CE} = 250 \text{ Vdc}, V_{EB(off)} = 1.5 \text{ Vdc}) $ $ 2N5655G $ $ (V_{CE} = 350 \text{ Vdc}, V_{EB(off)} = 1.5 \text{ Vdc}) $ $ 2N5657G $ $ (V_{CE} = 150 \text{ Vdc}, V_{EB(off)} = 1.5 \text{ Vdc}, T_{C} = 100^{\circ}\text{C}) $ $ 2N5655G $ $ (V_{CE} = 250 \text{ Vdc}, V_{EB(off)} = 1.5 \text{ Vdc}, T_{C} = 100^{\circ}\text{C}) $ $ 2N5657G $	I _{CEX}	- - -	0.1 0.1 1.0 1.0	mAdc
Collector Cutoff Current $(V_{CB} = 275 \text{ Vdc}, I_E = 0)$ 2N5655G $(V_{CB} = 375 \text{ Vdc}, I_E = 0)$ 2N5657G	Ісво	-	10 10	μAdc
Emitter Cutoff Current (V _{EB} = 6.0 Vdc, I _C = 0)	I _{EBO}	_	10	μAdc
ON CHARACTERISTICS	1		W.	W.
DC Current Gain (Note 3) $ \begin{aligned} &\text{(I}_{\text{C}} = 50 \text{ mAdc, V}_{\text{CE}} = 10 \text{ Vdc)} \\ &\text{(I}_{\text{C}} = 100 \text{ mAdc, V}_{\text{CE}} = 10 \text{ Vdc)} \\ &\text{(I}_{\text{C}} = 250 \text{ mAdc, V}_{\text{CE}} = 10 \text{ Vdc)} \\ &\text{(I}_{\text{C}} = 500 \text{ mAdc, V}_{\text{CE}} = 10 \text{ Vdc)} \end{aligned} $	h _{FE}	25 30 15 5.0	_ 250 _ _	-
Collector–Emitter Saturation Voltage (Note 3) ($I_C = 100 \text{ mAdc}$, $I_B = 10 \text{ mAdc}$) ($I_C = 250 \text{ mAdc}$, $I_B = 25 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}$, $I_B = 100 \text{ mAdc}$)	V _{CE(sat)}	- - -	1.0 2.5 10	Vdc
Base–Emitter Voltage (I _C = 100 mAdc, V _{CE} = 10 Vdc) (Note 3)	V _{BE}	_	1.0	Vdc
DYNAMIC CHARACTERISTICS	1			•
Current–Gain – Bandwidth Product (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 10 MHz) (Note 4)	f⊤	10	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	C _{ob}	-	25	pF
Small–Signal Current Gain (I _C = 100 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{fe}	20	_	-

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics for the listed test conditions.

2. Indicates JEDEC registered data for 2N5655 Series.

3. Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.

4. f_T is defined as the frequency at which |h_{fe}| extrapolates to unity.

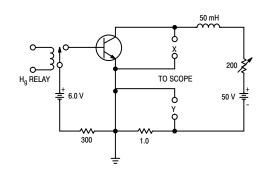
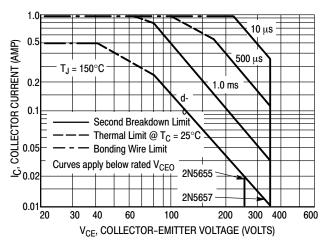



Figure 1. Power Derating

Figure 2. Sustaining Voltage Test Circuit

Safe Area Limits are indicated by Figures 3 and 4. Both limits are applicable and must be observed.

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 3 is based on $T_{J(pk)} = 150^{\circ}C$; T_C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}C$. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

Figure 3. Active-Region Safe Operating Area

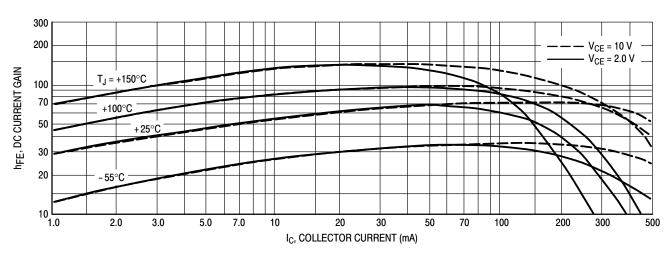


Figure 4. Current Gain

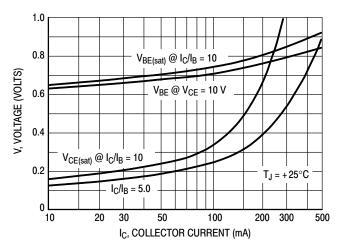


Figure 5. "On" Voltages

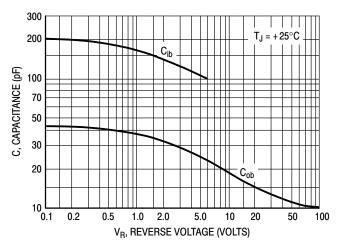


Figure 6. Capacitance

 $I_{\rm C}/I_{\rm B}=10$

V_{CC} = 100 V

500

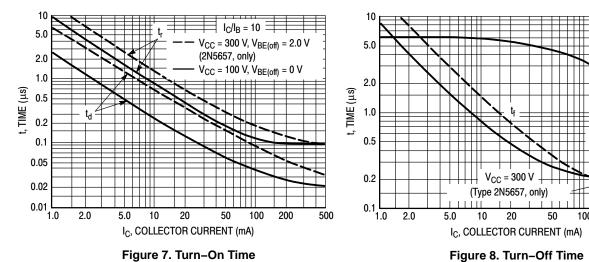
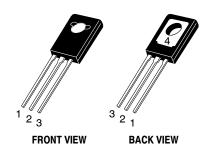
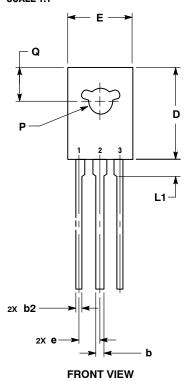
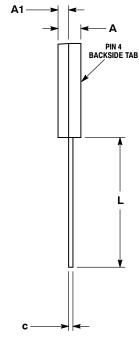



Figure 7. Turn-On Time





TO-225 CASE 77-09 **ISSUE AD**

DATE 25 MAR 2015

SCALE 1:1

SIDE VIEW

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. NUMBER AND SHAPE OF LUGS OPTIONAL.

	MILLIMETERS			
DIM	MIN	MAX		
Α	2.40	3.00		
A1	1.00	1.50		
b	0.60	0.90		
b2	0.51	0.88		
С	0.39	0.63		
D	10.60	11.10		
E	7.40	7.80		
е	2.04 2.54			
L	14.50	16.63		
L1	1.27	2.54		
P	2.90	3.30		
Q	3.80 4.20			

GENERIC MARKING DIAGRAM*

= Year

ww = Work Week XXXXX = Device Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1: PIN 1. 2., 4. 3.	EMITTER COLLECTOR BASE	STYLE 2: PIN 1. 2., 4. 3.	STYLE 3: PIN 1. 2., 4. 3.	BASE COLLECTOR EMITTER	STYLE 4: PIN 1. 2., 4. 3.	ANODE 1 ANODE 2 GATE	2., 4.	MT 1 MT 2 GATE
STYLE 6: PIN 1. 2., 4. 3.	CATHODE GATE ANODE	STYLE 7: PIN 1. 2., 4. 3.	STYLE 8: PIN 1. 2., 4. 3.	SOURCE GATE DRAIN	STYLE 9: PIN 1. 2., 4. 3.	GATE DRAIN SOURCE	STYLE 10: PIN 1. 2., 4. 3.	SOURCE DRAIN

DOCUMENT NUMBER:	98ASB42049B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-225		PAGE 1 OF 1		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi nakes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales