
USER MANUAL
www.onsemi.com

 Semiconductor Components Industries, LLC, 2023

July, 2023 − Rev. 0
1 Publication Order Number:

UM70092/D

FUSB15201DV Dual Port
USB Type-C�/PD Controller
Software Programming
Guide

UM70092/D

INTRODUCTION
The FUSB15201DV firmware codebase is a highly

optimized dual−port Type−C/PD controller driver that
supports the integrated Arm Cortex−M0+ processor.
Together with the FUSB15201DV EVB, this driver
provides customers with a complete platform for evaluating
a Type−C/PD solution.

The firmware provides the flexibility of supporting new
power delivery (PD) messages as well as any additional
Type−C state flows. The firmware also allows easy
modification of the hardware−specific characteristics
because of its Type−C/PD platform−agnostic architecture.
When supplied with a desired configuration, the codebase
can be used to quickly configure the device.

The code organization offers modularity, as it separates
source code for application, hardware abstraction layer,

platform dependent code, and the USB Type−C/PD core.
Default configurations supported by the FUSB15201DV
Type−C/PD are listed in Table 2.

The PD core features are configurable using project build
options or by modifying the vendor info file. The codebase
includes a sample Eclipse project that can be compiled using
the Eclipse based onsemi IDE, thus allowing a faster
bring−up to evaluate the Type−C/PD standalone controller.

FUSB15201DUAL60WGEVB

http://www.onsemi.com/

UM70092/D

www.onsemi.com
2

SUPPORTED POWER DELIVERY
Table 1 summarizes the PD options available on the

FUSB15201DV.

Table 1. FUSB15201DV SUPPORTED DEVICE CHARACTERISTICS (60 W PDP)

Feature Supported Type Firmware

Type−C Source Yes

PD Provider Yes

Advertised PDOs PDO Type Description

PDO 1 Fixed 5V / 3A

PDO 2 Fixed 9V / 3A

PDO 3 Fixed 15V / 3A

PDO 4 Fixed 20V / 3 A

NOTE: The PDOs supported are power supply dependent.

PORT CONFIGURATION
Table 2 describes the port configuration of

FUSB15201DV.

NOTE: The features described in this table are part of
the firmware and can be traced in file vif_info.h.

Table 2. FUSB15201DV SUPPORTED CONFIGURATION IN PORT

Feature Supported Description

PD Specification Revision 3.1 Supported Revision

PD Specification Revision Version 1.8 Supported Revision Version

SOP* Communication Yes Supports SOP, SOP’, SOP”

Manufacturer Info Message No Unsupported Get MFI

Data Role Swap to DFP Yes Supports swap to DFP

Data Role Swap to UFP Yes Supports swap to UFP

VCONN Swap to ON Yes Support for VCONN swap to ON

VCONN Swap to OFF Yes Support for VCONN SWAP to OFF

Cable Discovery Yes Supports Cable Query Process

Chunked Message Yes Support for Chunked Messages

Long UnChunked Extended Messages No Support for Long UnChunked Extended Messages

Rp Value 3A CC Pin Current advertisement

VCONN Source Yes VCONN sourcing support

PD Power Source 60000 mW PD port capability

USB Suspend May Clear No USB Suspend not supported

Modal Support No Disabled modal operation

Unconstrained Power Yes Sufficient external source of power is available

Port Type 3 Provider Only

http://www.onsemi.com/

UM70092/D

www.onsemi.com
3

FIRMWARE BUILD OPTIONS
The reference firmware and its default configuration

support the FUSB15201DV EVB platform for a complete
evaluation of the Type−C/PD solution. By following the

instructions in section Firmware Build Instructions, a
firmware binary can be built and loaded into the EVB. The
FUSB15201DV default supported values are listed in
Table 3.

Table 3. SUPPORTED BUILD CONFIGURATIONS

Component Value Description

CONFIG_BC1P2_CDP 0 Disabled support for BC1P2 CDP

CONFIG_BC1P2_CSM 0 Disabled support for BC1P2_CSM

CONFIG_BC1P2_DCP 1 Enabled support for BC1P2_DCP

CONFIG_BC1P2_DCP_ADDIV 1 Enabled support for BC1P2_DCP_ADDIV

CONFIG_DCDC 1 Enable DCDC power supply write via I2C

CONFIG_DRP 0 Disable DRP Support (Unsupported by board)

CONFIG_EPR 0 Disable EPR Support (Unsupported by board)

CONFIG_EPR_TEST 0 Disable EPR_TEST Support (Unsupported by board)

CONFIG_MINIMAL 0 Disable support for CONFIG_MINIMAL

CONFIG_EXTMSG 1 Enabled support for extended message length

CONFIG_LEGACY_CHARGING 1 Enabled support for legacy charging

CONFIG_LOG 0 Disabled support for logging

CONFIG_NOMINAL_PPS_CURRENT 0 Disabled support for nominal current

CONFIG_POWER_LIMITED 1 Enabled Power Limitation functionality

CONFIG_POWER_SHARING 0 Disabled power sharing functionality

CONFIG_SLEEP 1 Enabled support for deep sleep

CONFIG_SRC 1 Enabled support for source characteristic

CONFIG_USB4 0 USB4 support Disabled (Not supported in Firmware)

CONFIG_VDM 1 Enabled support for Vendor Define Message

DEBUG_PORTB 1 Enabled Debug functionality

FUSB15201 Define FUSB15201

HAL_USE_ASSERT Define assertion of size check

I2C3_BOARD Use I2C3 on board for Power Supply Communication

http://www.onsemi.com/

UM70092/D

www.onsemi.com
4

FIRMWARE BUILD INSTRUCTIONS
Build the firmware by performing the following steps:
 Download and install the onsemi IDE:

 Click on this link: onsemi IDE.
 Click Design Tools.
 Click onsemi IDE installer and download it to a location in your system.
 Follow the prompts to install the onsemi IDE.

 Download the 15201DV firmware code release:
 Click on this link.
 Click Design Tools.
 Click FUSB15201 Firmware Release and download the zip file.
 Unzip the contents into a directory of your choice.

NOTE: Make sure that the codebase has the directory structure as shown in section Code Organization.
 Open the onsemi IDE and load the project:

 From the top menu, choose File.
 Choose Open Projects from File System.

Figure 1.

 From Import Source, click on Directory .
 From the firmware source directory, choose

Go to fw_fusbdev > IDE > FUSB15201 > usbpd and select ON_IDE.

Figure 2.

 Build the FUSB15201 firmware:
 From the Project Explorer tab, right click on FUSB15201 USBPD (in ON_IDE), and select Build Project.

http://www.onsemi.com/
https://www.onsemi.com/products/wireless-connectivity/bluetooth-low-energy/rsl10
https://www.onsemi.com/products/interfaces/usb-type-c/fusb15201

UM70092/D

www.onsemi.com
5

Figure 3.

 Upon a successful build, the binary FUSB15201 USBPD.bin is copied under
IDE\FUSB15201\usbpd\ON_IDE\Debug\.

 Refer to the document FUSB15201DV Single Port USB TYPE−C/PD Controller Flash Programming Guide for the
steps to program the FUSB15201DV.

 Optional: Changing build configuration:
 We recommend that you keep the default build configuration to test the EVB.

Advanced users, can follow the steps below to change the config parameters listed
on Table 3.

 Press Alt−Enter to display the Properties for FUSB15201 USBPD.

Figure 4.

 Go to C/C++ General > Paths and Symbols >
Symbols > GNU C.

http://www.onsemi.com/

UM70092/D

www.onsemi.com
6

FIRMWARE ARCHITECTURE
This section outlines the firmware architecture of the

FUSB15201DV. In the subsections Code Organization and

Port Configuration, this section covers a high−level
overview of the code. A more in−depth description follows
in subsequent paragraphs.

a. Code Organization
Table 4 outlines the directory structure and describes the content of each subdirectory.

Table 4. FUSB15201 PROJECT SUBDIRECTORY DESCRIPTIONS

Component Description

Applications This component contains custom specific source files including the sample Device Policy
Manager. The vendor info file is also in this folder.

CMSIS

Device Platform specific source files

Drivers Hardware abstraction layer source files

External Type−C/PD state machine and abstraction layer

IDE/FUSB15201/usbpd/ON_IDE Sample Eclipse based project

SVD

b. Firmware Composition
The FUSB15201DV platform integrates an Arm Cortex−M0+ processor with a nested vector interrupt controller, a
wakeup interrupt controller, and a debug access port. The codebase includes peripheral drivers and support for multiple
external source interrupts for peripheral devices.
 PD Device Policy Manager

The firmware codebase provides reference code for the device policy manager (DPM). The sample DPM can manage
platform−specific PD message requests and responses using event subscriptions and notification callbacks. It uses a
hardware abstraction layer (HAL) to prevent policy engine or Type−C state machine direct access to hardware
registers. The DPM manages a private structure that encapsulates TCPD (Type−C/PD) driver and port structure.

 PD Policy Engine Core
The PD policy engine (PE) state machine is platform−agnostic. Most PE functions are statically defined and are only
accessible through the TCPD driver, except for PE state machine core functions, PE state machine enable/disable
functions, and a PE hard reset message interrupt handler. The Type−C/PD core in this codebase can support
characteristics other than the ones listed in Table 1. These options are configurable, as described earlier in this
document.
Policy engine functions:

void policy_pd_enable(struct port *port, bool source)

This function enables the PE state machine, used on startup. It can be used in certain contexts with
policy_pd_disable() when your device cannot offer power delivery.

void policy_pd_disable(struct port *port)

This function disables the PE state machine. This function is primarily used when the device cannot supply USB
Type−C power delivery.

void policy_receive_hardreset(struct port*port)

This function processes a hard reset when a PD message is received through the PD controller interrupt bit.

Void policy_engine(struct port *port)

This is the main function for the PE core state machine.
 PD PE Message Handling

A few PE message handling function examples are listed below. A full list of PD message handlers can be found in
policy.c. These functions are only accessible from the policy engine.

static void policy_state_source_get_sink_cap(struct port *port)

This function is called when a PD provider sends a request for sink capability.

http://www.onsemi.com/

UM70092/D

www.onsemi.com
7

static void policy_state_source_give_sink_cap(struct port *port)

This function is called when a PD provider responds to a request for sink capability.

static void policy_state_source_send_drswap(struct port *port)

This function is used for a PD provider to request drswap.

static void policy_state_source_evaluate_drswap(struct port *port)

This function is used for a PD provider to evaluate a received drswap request.
 Type−C State Machine

Port detection on attach/detach of a Type−C device is handled inside the USB TypeC state machine function,
typec_sm(). As with PD, this is also platform−agnostic, and all access to the hardware is controlled by the TCPD
driver.

 Observer Files
These files are shared between the device policy manager and the policy engine. observer.c contains the function
definitions of event_subscribe, event_unsubscribe, and event_notify.
observer.h has all the declarations of all the event ID and structure definitions necessary for events.

c. Event Handling
The PD event messaging between DPM and PE is handled with no assumption that DPM subscribes to every
notification. This provides flexibility for the DPM to only subscribe to events that are needed for the intended
application. It also allows reduction of the binary size.
 Adding New Events

While the events that are already defined might be adequate in the supported platform, if an application requires more
event subscriptions/notifications between the policy engine and the device policy manager, additional events can be
added as needed. To add a new event, add a definition to the enum type event_t in observer.h.

 Registering Event Handlers
Event subscription/callback notification is used by the policy engine and the device policy manager to pass on PD
message requests/responses and/or platformspecific behavior changes to the Type−C/PD controller. An event is
registered using the function event_subscribe following this format:

event_subscribe(EVENT_ID, callback_handler)

The device policy manager subscribes to applicable events, and the policy engine uses these events to notify the
DPM by using the function event_notify, following this format:

event_notify(EVENT_ID, struct* tcpd_device, void *ctx)

Events in Table 5 are defined in observer.h.
IDs are declared as an enumerated type and use the ##preprocessor to generate the EVENT with “EVENT_”
prepended to each ID in Table 5.
Example: Event ID “TC_ATTACHED” Generates an event with descriptor “EVENT_TC_ATTACHED”.

Table 5. SUPPORTED EVENTS

Event ID Description

TC_ATTACHED Type−C device attached

TC_DETACHED Type−C device detached

VBUS_REQ VBUS value request for source

VBUS_SINK VBUS value request for sink

VCONN_REQ VCONN request to turn on/off sourcing

PD_DEVICE PE notify PD device capable

PD_GET_SRC_CAP PE notify source capability request

PD_GET_SNK_CAP PE notify sink capability request

PD_GET_EXT_SRC_CAP PE notify extended source capability request

PD_GET_EXT_SNK_CAP PE notify extended sink capability request

PD_SNK_CAP_RECEIVED PE notify sink capability message is received

http://www.onsemi.com/

UM70092/D

www.onsemi.com
8

Table 5. SUPPORTED EVENTS

Event ID Description

EXT_SNK_CAP_RECEIVED PE notify extended sink capability is received

PD_GET_BAT_CAP PE notify get battery capability request

PD_GET_BAT_STAT PE notify get battery status request

PD_BAT_CAP_RECEIVED PE notify battery capability is received

PD_BAT_STAT_RECEIVED PE notify battery status is received

PD_GET_MAN_INFO PE notify get manufacturer info request

PD_SRC_EVAL_SNK_REQ PE notify to evaluate sink request

PD_SNK_EVAL_SRC_CAP PE notify to evaluate source capability

PD_CBL_ID_RECEIVED PE notify cable ID is received on cable query

PD_GET_ALERT_REQ PE notify to fill out alert request

PD_ALERT_RECEIVED PE notify alert message is received

PPS_STATUS_RECIEVED PE notify PPS status is received on PPS status request

PPS_STATUS_REQUEST PE notify PPS status request

PPS_MONITOR PE notify to activate PPS handling

PPS_ALARM PE notify to set PPS alarm

ENTER_USB_REQUEST Disabled

ENTER_USB_RESPONSE Disabled

ENTER_USB_RECEIVED Disabled

IDENTITY_RECEIVED Not used

PD_STATUS PE notify PD device status

MODE_ENTER_SUCCESS Not used

MODE_EXIT_SUCCESS Not used

MODE_VDM_ATTENTION Not used

HARD_RESET PE notify hard reset

UNSUPPORTED_ACCESSORY PE notify for unsupported accessory attached

DEBUG_ACCESSORY Not used

AUDIO_ACCESSORY Not used

ILLEGAL_CBL Not used

BIST_SHARED_TEST_MODE PE notify BIST shared test

PD_NEW_CONTRACT PE notify for new PD contract

DATA_RESET_ENTER Not used

Event ID Description

DATA_RESET_EXIT Not used

PD_GET_FW_ID PE notify get firmware ID request

PD_FW_INITIATE PE notify to initiate firmware update

PD_INITIATE_RESP_SENT PE notify firmware update response was sent

PD_GIVE_REVISION PE notify to provide revision

PD_GIVE_SOURCE_INFO PE notify to provide source info

PPS_CL Event to grab PPS CV (Constant Voltage) or CL (Constant Load) mode

d. Vendor Info File
Device Vendor information is in file vif.info.h. If modifications are needed, follow the steps below:

http://www.onsemi.com/

UM70092/D

www.onsemi.com
9

a. If the information is already available in the header file, you only need to modify the default value there.
b. If the information is not yet defined in the header file, modify the header file by adding the new information to the
applicable port, and add the entry to PORT_VIF_T, which represents the newly added information in vif_info.c.

Examples:
 Changing max current in PDO 4 from 20V/3A to 20V/3.25A in the Port:

Current PDO values
#define PORT_A_SRC_PDO_VOLTAGE_4 400 // 20000 mV
#define PORT_A_SRC_PDO_MAX_CURRENT_4 300 // 3.00 A

New PDO values:
#define PORT_A_SRC_PDO_VOLTAGE_4 400 // 20000 mV
#define PORT_A_SRC_PDO_MAX_CURRENT_4 325 // 3.25 A

 Removing support for chunked extended messages in Port:
Current value:
#define PORT_A_CHUNKING_IMPLEMENTED_SOP 1

New Value:
#define PORT_A_CHUNKING_IMPLEMENTED_SOP 0

 Adding new entry in the vif_info.h in the Port:
a. #define PORT_A_NEW_ENTRY.
b. Add an entry in PORT_VIF_T in Device/FUSB15201/vif_info.c.

e. TCPD Driver – Changes from Previous Versions
The current firmware driver is based on a hardware abstraction layer software design. This design provides
abstraction to/from PE and Type−C state machine. Neither PD nor Type−C can directly change the
platform−specific behavior. The TCPD driver implements access to the port HAL and other supported
peripherals. Differently from before, the code has removed pointer dereferencing to access HAL functions.
Instead, driver function permissions are given to files that require it in order to function, saving a large amount
of space, and saving several kB of function pointer storage and pointer dereferencing within the code. In
addition, several high level interfaces built upon the high level HAL abstraction have been removed to save
space.

Old flow example:
PE changes VBUS value for a contract being negotiated: the following logic path would be followed:
PE −> port_vbus_src() −> FUSBDEV HAL with Drivers Abstracted (port−>dev−>driv−>XXX)
port −> dev −> driv −> set_pd_source()−>TCPD HAL Driver with Devices Abstracted (fusb15xxx_XXX)
fusb15xxx_set_pd_source() −> HAL Driver with Registers Abstracted (XXX_DRIVER)
TCPORT_DRIVER.pd.Source() −> Register level logic

New flow example:
PE changes VBUS value for a contract being negotiated: the following logic path would be followed:

PE() −> port_vbus_src() −> FUSBDEV HAL Abstraction with Drivers Abstracted (fusbdev_tcpd_XXX)

fusbdev_tcpd_set_pd_source() −>TCPD Driver with Devices Abstracted (fusb15xxx_XXX)
fusb15xxx_set_pd_source() −>HAL Driver with Registers Abstracted (XXX_DRIVER)
TCPORT_DRIVER.pd.Source() −> Register level logic

Arm, Cortex, and the Arm logo are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere.
USB, USB−C, USB Type−C and the USB logos are registered trademarks of USB Implementers Forum, Inc.

http://www.onsemi.com/

UM70092/D

www.onsemi.com
10

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any
products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION
TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800−282−9855 Toll Free USA/Canada
Phone: 011 421 33 790 2910

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421 33 790 2910
For additional information, please contact your local Sales Representative

http://www.onsemi.com/
https://www.onsemi.com/site/pdf/Patent-Marking.pdf

