onsemi Device Nomenclature

TND310

This document contains the device nomenclature breakdown (also referred to as the part number decoder, product naming convention, or part naming convention) for onsemi orderable devices. Whenever possible, onsemi uses these numbering systems in the naming of their products.

The ESD/TVS, small signal diode and transistor, and thyristor portfolios have no single standard naming convention. They consist of many industry standard nomenclatures, along with several market targeted naming conventions. For any questions, please contact your local onsemi sales representative.

Historical Nomenclature Notes

During its history, onsemi has been part of another company, and has acquired other companies and product lines. In order to maintain consistency for customers, part numbers have not changed, wherever possible. The following prefixes may indicate the original manufacturer:

Ax - Aptina Imaging Corporation
AX - Axsem AG
ADx - Analog Devices, Inc.
AMIS - AMI Semiconductor
ASM - PulseCore
CAT - Catalyst Semiconductor
CS - Cherry Semiconductor
Kxx - Truesense Imaging, Inc.
MC - Motorola
NOI - Cypress Semiconductor

Current Nomenclatures

Analog 2
CMOS Logic 3
Analog Switch 3
Clock and Data Management 4
Crystal Oscillators 5
Integrated Solutions 6
MOS Power 7
Power MOSFETs - SO-8 (MiniMOS),Micro8, SOT-223, and TSOP-6 8
Bipolar Power 9
Rectifiers 11
FMO Bump 12
LED/Lighting Products 12
EEPROMs 13
Memory Products 18
Low Drop Out (LDO) Products 19
Supervisor Products 19
Charge Pumps, LED Drivers and I/O Bus Products 20
Digitally Programmable Potentiometer and Supervisor with Memory Products 20
ASIC Devices 21
Ambient Light Sensors 22
Photo Diode Arrays 22
Contact Image Sensors \& Modules 23
Image Sensors 24
Hearing Products 30
Passive Tunable Integrated Circuits (PTIC) 33
Power Management ICs (PMIC) 34
RF Devices. 35
Radar Products 38
Silicon Photomultipliers and SPAD Arrays 39
IPM, DS and iPS Devices 41
Silicon Carbide MOSFETs \& Diodes, EliteSiC 42

Naming Convention for Analog Devices

TND310

Naming Convention for CMOS Logic Family Devices

Naming Convention for Analog Switch Devices

	NLAS 522230	
Application Type - 5 = Audio - 7 = Multimedia/USB/Data - $9=$ General Purpose		\qquad Flexible (Could be used for bandwidth or other parameters) Will not be present unless needed.
Channel Number - $1,2,3,4,8$...	Function Number - 1 = SPST - 2 = SPDT - 3 = DPDT - $4=4: 1$ Multiplexer - $8=8: 1$ Multiplexer	Ron Range - 0 : Ron<100~1000 Ω - 1: Ron<10~100 Ω - 2: Ron<1~10 Ω - 3: Ron<1~0.5 Ω

TND310

Naming Convention for Clock and Data Management Devices

TND310

Naming Convention for Crystal Oscillator Devices

TND310

Naming Convention for Integrated Solutions Devices

TND310

Naming Convention for MOS Power Devices

TND310

Naming Convention for SO-8 (MiniMOS), Micro8, SOT-223, and TSOP-6 Power MOSFETs

PREVIOUS FORMAT 3

Circuit Identifier
TMOS®

- $M=$ Miniature

Even = N Channel Odd = P Channel

Package Type

- DF = Dual FET (SO-8)

Voltage + 10

- SF = Single FET (SO-8)

Technology

- FT = FET Transistor (SOT-223)
- 5 = Trench
- MTSF = Single FET (Micro8)
- 4 = HD3e
- MTDF = Dual FET (Micro8)
- 3 = HD3
- MGSF = TSOP-6, SOT-23
- 1 = HD1

TND310

Naming Convention for Bipolar Power Devices

TND310

Naming Convention for Bipolar Power Devices

— PREFIX— —— STEM

PREVIOUS FORMAT 1

PREVIOUS FORMAT 2

Package Designator

- D = Case 77, TO-218 or TO-220
- UC = Bare Die
- UD = DPAK
- UH = Case 77 or TO-220
- UL = TO-220 or TO-220 Full PAK
- $\mathrm{UV}=\mathrm{TO}-220$ or TO-3
- UX = TO-220

PREVIOUS FORMAT 3
 (2 to 5 digits/characters) C prefix denotes bare die

Naming Convention for Rectifier Devices

PREFIX KEY MUR = ULTRA FAST RECTIFIER
MBR $=$ (SCHOTTKY) BARRIER RECTIFIER
$M R=$ STANDARD \& FAST RECOVERY
MSR = ULTRASOFT
SUFFIX KEY CT $=$ CENTER TAP (DUAL) TO-220, POWERTAP, DPAK, D²PAK PT = CENTER TAP (DUAL) TO-218 PACKAGE
WT = CENTER TAP (DUAL) TO-247
SF $=$ SOD-123 FLAT LEAD
PF = POWER FACTOR CORRECTION SPECIFIC

EXAMPLE:	MUR	30	20	WT
	ULTRAFAST	30 AMP	200 V	CENTER TAP (DUAL) TO-247
EXAMPLE:	MBR	30	45	WT
	SCHOTTKY	30 AMP	45 V	CENTER TAP (DUAL) TO-247

Naming Convention for FMO Bump

Bump Location

- A = ASE-Kaoshiung
- F = Flip-Chip Int'l.
- M = Amkor
- $S=$ Seremban
- $\mathrm{I}=\mathrm{ICl}$

Place Holder
Default alpha " A " or " C ".
(Note: This field was originally used to indicate test location. The field is no longer used.)

0000x-9999x
(Should correspond to FG part number root. Performance options may be included in this field as well. All 5 characters should be populated. " 0 " may be used as a place holder.)

Wafer Fab/Foundry \qquad

- Z = Aizu
- C = COM1
- I = ISMF
- T = Tower
- X = XFAB
- $\mathrm{R}=$ Roznov
- $\mathrm{Y}=$ Piestany

Naming Convention for LED/Lighting Products

Circuit Identifier

- $\mathrm{N}=$ onsemi
- $\mathrm{C}=$ Integrated Circuit

Product Family

- L = Lighting/SSL
- $\mathrm{N}=$ Advanced Interface
- $P=$ Power Management
- $S=$ Signal
- $\mathrm{T}=$ Thermal Management
- $\mathrm{V}=$ Vehicular
- $\mathrm{Y}=$ Specials/Customs

Device Identifier

* Optional

Naming Convention for Current Serial EEPROMs

TND310

Naming Convention for I2C Serial EEPROMs

Special Option

- A = Different Slave Address
- $\mathrm{B}=$ Different Pinout
- E = Energy Harvesting

Package Designator

- DW = SOIC • MN = DFN/QFN >0.8 mm Thickness
- DT = TSSOP - MT = DFN/QFN 0.6-0.8 mm Thickness
- U = US-8 •MU = DFN/QFN $<0.6 \mathrm{~mm}$ Thickness
- $\mathrm{DS}=$ SC-88 - MUW3 $=$ Wettable flank UDFN $2 \times 3 \mathrm{~mm}$
- $\mathrm{SN}=$ SOT-23 • MUW2 $=$ Wettable flank UDFN $2 \times 2 \mathrm{~mm}$
- SL = SOD-123 • A\# = CSP Non-coated, \# of balls
- SQ = SC-70 •C\# = CSP Coated, \# of balls

TND310

Naming Convention for SPI Serial EEPROMs

Product Class

- $\mathrm{N}=$ Standard
- NV = Automotive Grade

Product Family

- 25 = SPI

Memory Density

- $010=1 \mathrm{~kb}$ - $640=64 \mathrm{~kb}$
- $020=2 \mathrm{~kb} \cdot 128=128 \mathrm{~kb}$
- $040=4 \mathrm{~kb} \quad$ - $256=256 \mathrm{~kb}$
- $080=8 \mathrm{~kb} \cdot 512=512 \mathrm{~kb}$
- $160=16 \mathrm{~kb} \quad$ - (M)01 = 1024 kb
- $320=32 \mathrm{~kb}$

Package Designator

- DW = SOIC
- U = US-8
- DT = TSSOP - DS = SC-88
- MN\# = DFN/QFN $>0.8 \mathrm{~mm}$ Thickness $\cdot \mathrm{SN}=$ SOT- 23
- MT\# = DFN/QFN 0.6-0.8 mm Thickness •SQ = SC-70
- A\# = CSP Non-coated, \# of balls
- MU\# = DFN/QFN $<0.6 \mathrm{~mm}$ Thickness
- MUW3 = Wettable flank UDFN $2 \times 3 \mathrm{~mm}$
- C\# = CSP Coated, \# of balls

Pb-Free Designator

- G = Lead-Free Package

Tape \& Reel Designator

- TB = Wettable Flank UDFN
- $\mathrm{Tx}=$ Tape \& Reel $\mathrm{x}=$ kunits per reel

Special Option

- $F=I D$ Page
- $Y=$ Ultra-Thin CSP Height
- L = Low Voltage

Temperature Range

- $\mathrm{J}, \mathrm{D}=$ Industrial $\left(-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
- $P=$ Industrial Intermediate or Automotive Grade $2\left(-40\right.$ to $\left.+105^{\circ} \mathrm{C}\right)$
- $\mathrm{E}=$ Industrial Extended $\left(-40\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
- $\mathrm{V}=$ Automotive Grade $1\left(-40\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
- $\mathrm{H}=$ Automotive Grade $0\left(-40\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$
- $\mathrm{Q}=$ Heavy Duty Industrial $\left(-40\right.$ to $\left.+175^{\circ} \mathrm{C}\right)$
- MUW2 $=$ Wettable flank UDFN $2 \times 2 \mathrm{~mm}$

Naming Convention for Legacy I2C Serial EEPROMs
(Formerly Catalyst Semiconductor)

Naming Convention for Legacy SPI Serial EEPROMs
(Formerly Catalyst Semiconductor)

Naming Convention for Microwire Serial EEPROMs

(Formerly Catalyst Semiconductor)

Naming Convention for EEPROM Memory

TND310

Naming Convention for Memory Products

Naming Convention for Supervisor Products

(Formerly Catalyst Semiconductor)

Naming Convention for Charge Pumps, LED Drivers, and I/O Bus Products
 (Formerly Catalyst Semiconductor)

Naming Convention for Digital Programmable Potentiometers and Supervisor with Memory Products
 (Formerly Catalyst Semiconductor)

\qquad

- V = SOIC
- $\mathrm{E}=$ Extended $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
- VP2 $=$ TDFN, $2 \times 3 \times 0.75 \mathrm{~mm}$
- W = SOIC
- $\mathrm{Y}=$ TSSOP, 4.4 mm
- $\mathrm{Z}=$ MSOP, $3 \times 3 \mathrm{~mm}$
- $\mathrm{ZD} 2=\mathrm{TDFN}, 3 \times 4.9 \times 0.75 \mathrm{~mm}$
- ZD4 $=$ TDFN, $3 \times 3 \times 0.75 \mathrm{~mm}$

TND310

Naming Convention and Ordering Information for ASIC Devices

[^0]
TND310

Naming Convention for Ambient Light Sensor Devices

Naming Convention for Photo Diode Array Devices

TND310

Naming Convention for Contact Image Sensor Devices

Naming Convention for Contact Image Sensor Modules

TND310

Naming Convention for Image Sensors

(Formerly Cypress Semiconductor)

Naming Convention for Image Sensors

(Formerly Truesense Imaging, Inc.)

K AI - 290 50-CXA - DD - AA

Product Line

- K = Image Sensors

Family Designation

- $A F=$ Full Frame CCD
- AI = Interline CCD
- $\mathrm{AE}=$ Interline EMCCD
- LI = Linear CCD
- SC = Support Chip
- $A C=C M O S$
- AT = TDI CCD

Resolution (2 or 3 Digits)
Specified in units of 100 K pixels, e.g. $290=29.0$ Mega Pixels

Sequence (2 Digits)

Color Filter Array

- A = No CFA (Monochrome)
- $\mathrm{B}=$ Pigment, Bayer CMY
- C = Pigment, Bayer RGB
- D = Pigment, Linear RGB
- $\mathrm{E}=3 \mathrm{G}$ Stagger
- $F=$ Pigment, Bayer RGB, Gen 2
- $G=$ Striped RGRB
- H = RB Checkerboard
- J = Hybrid Dichroic
- L = RBG and Mono
- $M=$ Mono with RB Surround
- $\mathrm{N}=$ Pigment, Bayer RGB, Shorter Red Wavelength
- $\mathrm{P}=$ Sparse CFA Pattern A
- $\mathrm{Q}=$ Sparse CFA Pattern A, Gen 2
- R = Pigment, Linear RGB, Gen2
- $\mathrm{S}=$ Mono with RB Surround, Gen2
- X = Special

Microlens

- A = No microlenses
- $\mathrm{B}=$ Telecentric microlenses
- C = Cylindrical microlenses
- D = None with spacer (Not for UV or bundle attachment)
- $\mathrm{E}=$ Telecentric, microlenses, enhanced ultraviolet
- X = Special

Product Revision

Package

- A = Wafer Form (No Pkg)
- K = PGA, CuW Base
- B = Die Form (No Pkg)
- C = Cerdip, Sidebrazed Pins
- D = Cerdip, Sidebrazed Pins, CuW
- E = Cerdip, Leadframe
- L = QFP
- M = CSP
- $F=C L C C$
- $\mathrm{N}=$ Bare Die, Reconstituted Wafer
- $P=$ Polyimide Substrate
- $G=P L C C$
- $Q=$ Aluminum Nitride Substrate
- H = Plastic DIP
- R = pLLP
- $\mathrm{J}=\mathrm{PGA}$
- $\mathrm{S}=\mathrm{PGA}$, CuW Base, TEC Cooler
- X = Special

Product Grade

- $0=$ Highest Grade (Fewest Cosmetic Defects)
- 1 = Cosmetic Specs Relaxed Relative to Grade 0
- 2 = Cosmetic Specs Relaxed Relative to Grade 1
- 3 = Cosmetic Specs Relaxed Relative to Grade 2
- A = Standard Grade: Used when only one grade is available for a given product.
- C = Commercial Grade: Meets all specification criteria, but have not been fully qualified. Intended for evaluation purposes only and have NO warranty. Quantities are strictly limited and sold only "as available".
- $\mathrm{E}=$ Engineering Grade: Electrically functional and meet most, but not necessarily all, product performance specifications, however there are no limitations on the number of or size of cosmetic defects (points, clusters, columns, glass defects, etc.) allowed. Intended for evaluation purposes only and have NO warranty. Quantities are strictly limited and sold only "as available".
- $\mathrm{T}=$ Test Sample: Closely resembles the performance of the final product, however may not meet any of the specification criteria. Intended for evaluation purposes only and have NO warranty. Quantities are strictly limited and sold only "as available".
- $M=$ Mechanical Sample: Meets all physical dimensions and tolerances and likely does not image. Intended for evaluation purposes only and have NO warranty. Quantities are strictly limited and sold only "as available".
- $X=$ Special

Testing Method

- A = Standard
- $B=$ Standard with Defect Map
- C = Non-Standard
- D = Non-Standard with Defect Map
- $\mathrm{E}=$ Low Temperature
- $F=$ Low Temperature with Defect Map
- $G=$ Customer Specific
- H = Standard with Special Visual
- X = Special

Cover Glass

- $\mathrm{A}=$ No Glass
- $B=$ Clear, No Coatings
- C = Clear, AR Coated 1 Side
- $D=$ Clear, AR Coated 2 Sides
- $\mathrm{E}=$ Clear, AR Coated Side 1, IR Coated Side 2
- $F=$ Quartz, No Coatings
- $G=$ Plastic, No Coatings
- $H=$ IR Absorbing, AR Coated 2 Sides
- J = Clear, AR Coated 2 Sides, with Light Shield
- K = Quartz, AR Coated 2 Sides
- L = Hermetic, AR Coated 2 Sides
- P = Clear, No Coatings (Taped)
- $\mathrm{Q}=$ Clear, AR Coated 1 Side (Taped)
- R = Clear, AR Coated 2 Sides (Taped)
- $S=$ Quartz, No Coatings (Taped)
- $X=$ Special

Naming Convention for Image Sensors

(Formerly Aptina Imaging Corporation)

Base Part Number

Product Line

- A = Image Sensors

Product Type

- S = SOC - G= Generic
- R = RAW Sensor
- $\mathrm{B}=$ Bridge
- $\mathrm{P}=\mathrm{ISP}$
- $\mathrm{D}=$ Downgrade
- $\mathrm{F}=\mathrm{iToF}$

Resolution

- Y1 $=0.01$ Megapixe
- $A 1=100-199 \mathrm{M}$
- Y2 $=0.02$ Megapixel
- $\mathrm{A} 2=200-299 \mathrm{M}$
- $\mathrm{Y} 9=0.09$ Megapixel
- $\mathrm{A} 3=300-399 \mathrm{M}$
- $\mathrm{X} 1=0.1$ Megapixel
- $N N=N / A$
- X9 = 0.9 Megapixel
- 01 = 1 Megapixel
- 99 = 99 Megapixel
- B1 = Demo3 Base Board
- $\mathrm{B} 2=$ Demo3 Adapter - Old Style HB
- B3 = Demo2x Adapter - New Style HB
- B4 = ICP Adapter Board
- B5 = Stereo Receiver Board

S H D2 O-XX - YYYYY - E

Optical Format

- $0=>1$ " or ISP - $5=1 / 5^{\prime \prime}$
- $1=1$ "-2" $\quad 6=1 / 6$ "
- $A=1 / 10$ "
- $\mathrm{H}=$ APS-H/35 mm
- 2 = $1 / 2^{\prime \prime}$ - $7=1 / 7^{\prime \prime}$
$11{ }^{\prime \prime}$
- $1=2 "-3 "$
- $3=1 / 3^{\prime \prime}$
- $8=1 / 8^{\prime \prime}$
- C = 1/12"
- $\mathrm{J}=3 "-4 "$
- 9 = 1/9"
- $G=2 / 3$ "
- K = 4"-5"
- $4=1 / 4$ "
- $\mathrm{N}=\mathrm{N} / \mathrm{A}$

Unique Product Identifier (ID)
Must increment for a new product with the same resolution and optical format (e.g., each new $1 / 4$ " VGA part increments this by one). Sequence 0, 1, 2...9, A, B,...Z.

Marketing Descriptor

Provides marketing ability to add additional descriptive information that may be helpful in positioning the part.

- CS = Default, CMOS Sensor • SR = Surveillance
- PD = Phase Detection
- MD = Medical
- IR = Infrared
- CM = Camera
- NP = NIR (CSD)
- AT = Automotive
- HS = High Speed

Major "Imager Customer" Revision
Revision number 1~9 shown during development and initial release Revision " S " will replace number after full production release for long-running products

Chromaticity

- $C=$ RGB
- A = Color Array
- $\mathrm{M}=$ Monochrome - $\mathrm{N}=$ Mono Array
- $\mathrm{Y}=\mathrm{CMY}$ - $\mathrm{E}=\mathrm{RCCG}$
- $R=$ RCCC \quad - $F=R Y Y B$
- $G=$ RGBC - $H=$ RGBIR
- $B=$ RCCB $\cdot P=$ RYYCy
- $\mathrm{S}=\mathrm{Common}$
- $X=N / A$
- L = Logic

CRA Degree
" 00 " as N/A, otherwise will show
the actual degree shift

Sample and Demo Board Identifier

- E = Eng Identifier (AS/ES/QS)
- M = Mechanical Sample
- GEVB = Demo Board
- GEVK = Demo Kit
- Blank = Production Part

Mechanical Finish, Glass, Wafer Thickness*
See definitions on following page

Customer Special
Customer specific attribute

Special Options

- 0 = Default, N/A
- $\mathrm{D}=$ Demo Board
- H = Head Board
- S = High Speed
- D3 = Demo Kit (Demo3)
- Q = Adapter/FBGA/ASIC Board
- $\mathrm{R}=$ Reference Board
- H3 = Demo Headboard
- $X=$ NIR (ASD)
- 1-9 = Other Special Variant

Package Options

- $\mathrm{A}=$ Lead Free $0=$ Module
- $\mathrm{B}=$ Leaded
- $C=$ Halogen Free
- $1=100 \mu \mathrm{~m}$ Thickness
- $\mathrm{D}=7.5 \times 7.5$ Lead Free $\quad 3=305 \mu \mathrm{~m}$ Thickness
- $\mathrm{E}=9.5 \times 9.5$ Lead Free $\quad 4=400 \mu \mathrm{~m}$ Thickness
- $F=5.5 \times 5.5$ Lead Free $\quad 6=675 \mu \mathrm{~m}$ Thickness
- M = MCP (Stack Packaging) - 9 = No-Grinding
- $Z=$ BIB/HIB Option
(Different Bond Option)
Package Type
- $\mathrm{A}=\mathrm{CLCC} \quad$ - $\mathrm{M}=\mathrm{CLGA}$
- $B=P L C C \quad \cdot N=i m B G A$
- $\mathrm{C}=\mathrm{ILCC}$
- $P=t p B G A$
- $D=$ Die Sales $\quad Q=i C B G A$
- $E=I B G A \quad \cdot R=m P L C C$
- $F=$ LBGA $\quad S=I E B G A$
- $G=V F B G A \quad$ - $T=m P B G A$
- $\mathrm{H}=\mathrm{CPGA}$ - $\mathrm{U}=\mathrm{ILGA}$
- $\mathrm{J}=$ TPLCC $\quad \mathrm{W}=$ Wafer Sales (EA)
- K = CSP • Y = Wafer Sales (WFR)
- $\mathrm{L}=\mathrm{WLC}$

Interface Type

- M = MIPI • N = N/A
- $\mathrm{C}=\mathrm{CCP} / \mathrm{CCP} 2 \quad \cdot \mathrm{P}=$ PARALLEL
- H = HISPI •L = LVDS
- $U=$ MULTI $\cdot S=$ SLVS
- E = Ethernet

Operating Temp

- $\mathrm{S}=$ Commercial
- $\mathrm{A}=$ Automotive $\left(-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
- $\mathrm{X}=$ Extended $\left(-40\right.$ to $\left.+105^{\circ} \mathrm{C}\right)$
- $N=N / A$

Naming Convention for Image Sensors

(Formerly Aptina Imaging Corporation)

- D = Dry Pack
- $\mathrm{T}=$ Tape \& Reel
- C = Chiptray

Protective Film \qquad

- $\mathrm{P}=$ With Protective Film
- $\mathrm{R}=$ Without Protective Film

Used only when there at two MPQ options for same part

- Empty = Default
- 1 = Single Tray
- RC1 = Fixed Number of Film Frames (Recon)

Glass Type

- Blank = Standard Glass
- BR = Double Side AR Glass
- AR = Single Side AR Glass
- IR = Single Side IR Glass
- IA = Infrared Cut-Off Filter/IRFC
- AM = Single Side AR Glass with Mask
- BM = Double Side AR Glass with Mask

Naming Convention for Image Sensor Adapter Boards

(Formerly Aptina Imaging Corporation)

TND310

Naming Convention for Camera Module

Naming Convention for Legacy Image Sensors

(Formerly Aptina Imaging Corporation)

MT9 J 001 I12 ST C V xxxxxx ES

Note: If using Form 1, Form 2 (Package Type) and Form 3 (Leads/Bumps/Pins) will be "0"

TND310

Naming Convention for Preconfigured Hearing Products

- $10=1$ st Configuration
- $20=2 n d$ Configuration

Chipset Revision
F A B - E1 T

- $\mathrm{A}=$ Original
- $\mathrm{B}=$ First Revision
- C = Second Revision
- $\mathrm{D}=$ Third Revision

Packing Format

- $\mathrm{T}=$ Tape \& Reel
- W = Waffle Pack
- B = Bubble Pack

JESD97 Indetification

- E1 = SnAgCu
- E6 = Contains Bi

Package Revision

- $\mathrm{A}=$ Original
- $B=1$ st Revision
- $\mathrm{C}=2 n \mathrm{nd}$ Revision

Package

- A = Hybrid $\cdot E=$ SMT PCB
- $\mathrm{B}=$ Die
- F = SMT Flex
- C = Wafer
- $\mathrm{G}=$ Submodule
- D = Printed Substrate • H = Assembly

Naming Convention for Custom Hearing Products

Memory

- $\mathrm{A}=$ No Memory $\cdot \mathrm{E}=512 \mathrm{~kb}$
- B = OTP $\quad \mathrm{F}=1 \mathrm{Mb}$
- $\mathrm{C}=64 \mathrm{~kb} \quad-\mathrm{G}=2 \mathrm{Mb}$
- $\mathrm{D}=256 \mathrm{~kb}$

Chipset Revision

- $A=$ Original
- $B=1$ st Revision
- $\mathrm{A}=$ Original
- $\mathrm{B}=$ First Revision
- C = Second Revision
- $\mathrm{D}=$ Third Revision

Memory

- A = No Memory •E = 512 kb
- $\mathrm{B}=\mathrm{OTP}$
- $F=1 \mathrm{Mb}$
- $\mathrm{C}=64 \mathrm{~kb}$
- $G=2 \mathrm{Mb}$
- $\mathrm{D}=256 \mathrm{~kb}$

TND310

Naming Convention for Ezairo-Based Hybrid Products

Chipset Revision (Major)

- 01 = 1st Revision
- $02=2 n d$ Revision

Naming Convention for Ezairo Die Products

TND310

Naming Convention for BelaSigna Products

TND310

Naming Convention for Passive Tunable Integrated Circuits (PTIC)

Naming Convention for Passive Tunable Integrated Circuit (PTIC) Controllers

TND310

Naming Convention for Dual PTIC RF Tuner IC

Naming Convention for Power Management ICs

- $\mathrm{A}=$ No Memory $\cdot \mathrm{E}=512 \mathrm{~kb}$
- B = OTP
- $\mathrm{F}=1 \mathrm{Mb}$
- C = 64 kb
- $G=2 \mathrm{Mb}$
- $\mathrm{D}=256 \mathrm{~kb}$

TND310

Naming Convention for Bluetooth® Low Energy RF ICs

NCH - RSL 10-x 1 01 WC 51-A B G

- NCH-RSL = Consumer/Healthcare
- MD-RSL = Life Critical Devices
- NCV-RSL = Automotive

Product Generation

- 10 = Bluetooth 5.0

Special/Custom*

- 'Blank' = Standard
* Reserved for Special or Custom Designator

Chip Version

- $1=1$ st Version
- 2 = 2nd Version

Chip Revision (Major)

- 01 = 1st Revision
- 02 = 2nd Revision
- $G=$ Green
- L = Leaded

Qualification

- $\mathrm{A}=$ Medical - Life Threatening
- $B=$ Medical - Non-Life Threatening
- $\mathrm{C}=$ Consumer

Carrier Type

- A = Tape \& Reel
- T = Trays
- $\mathrm{U}=$ Tubes

Package Pins

- 51 = 51 Pins

Package

- $\mathrm{A}=$ Hybrid
- B = BGA
- $B D=$ Bumped Die
- D = DFN
- $Q=Q F N$
- $\mathrm{S}=$ System in Package (SiP)
- $\mathrm{U}=$ Unbumped Die
- $\mathrm{W}=\mathrm{WLCSP}$
- WC = WLCSP with Backside Coating

TND310

Naming Convention for Standard RF ICs
 (Formerly Axsem)

Naming Convention for RF Microcontrollers
(Formerly Axsem)

TND310

Naming Convention for RF Microcontrollers with Radio Standards
 (Formerly Axsem)

Naming Convention for RF Modules
(Formerly Axsem)

TND310

Naming Convention for Radar Products

TND310

Naming Convention for Single Pixel Silicon Photomultipliers
 (Formerly SensL)

Naming Convention for Silicon Photomultiplier Arrays

(Formerly SensL)

Naming Convention for LiDAR R-Series Silicon Photomultiplier Arrays
(Formerly SensL)

Naming Convention for LiDAR SPAD Arrays
(Formerly SensL)

TND310

Naming Convention for IPM Devices

Circuit Identifier

- STK = Standard
- Other = Custom

Product Group

- 1 = Small Signal (> 10 MHz)
- 2 = Audio Power
- 3 = Small Signal ($<100 \mathrm{kHz}$)
- 4 = Audio Power (AB Class)
- 5 = Inverter (New), PFC*
- 6 = Actuator Driver, Inverter (Old)
- 7 = Switching Mode
- 9 = Automotive

Package Type

- See Table

Function

- See Table

UL Standard Certification

- - = Normal Products
- $\mathrm{U}=\mathrm{UL}$ Standard Certified Products

- E = Pb-Free

- H = Halogen Free

Optional Suffix

- One ot two digits
- Version change, testing change, forming change, etc.

Lead Forming

- See Table

Function Division or Forming Change

- $0=$ Standard
- $1=1$ st Change
- 2 = 2nd Change
- 3 = 3rd Change

Maximum Rated Current

- See Table

Maximum Rated Voltage

- See Table

	2	3	4	5	A
Designator	Package Type	Function	Maximum Rated Voltage	Maximum Rated Current	Lead Forming
(Blank)	-	-	-	-	Straight
1	Smart	3-Phase Inverter; Built-In 1 Shunt R	Up to 150 V ; Active High	1 A or Lower	-
2	Smart 2nd	3-Phase Inverter; For External 1 Shunt R	Up to 599 V ; Active High	Up to 2A	-
3	SIP04	3-Phase Inverter; Built-In 3 Shunt Rs	600 V; Active High	Up to 3 A	-
4	SOP1	3-Phase Inverter; For External 3 Shunt Rs	600 V; Active High	Up to 5 A	-
5	SIP1A	Single-Phase Inverter; Built-In 1 Shunt R	600 V; Active High	Up to 8 A	-
6	SIP2	Single-Phase Inverter; For External 1 Shunt R	Up to 1200 V; Active High	Up to 10 A	-
7	SIP2A	Induction Heating; 1 Burner	1700 V; Active High	Up to 10 A	-
8	SIP3	induction Heating; 2 Burners	-	Up to 12 A	-
9	SIP2 Case Type	PFC + 3-Phase Inverter	-	Up to 15A	-
0	SIP3 Case Type	PFC + 3-Phase Inverter	-	Up to 15 A	-
A	DIP30	PFC; No Bridge	Up to 150 V ; Active Low	Up to 20 A	SL Zigzag (From case to first clipping point $=2.5 \mathrm{~mm}$)
B	DIP42	PFC; With Bridge	Up to 599 V ; Active Low	Up to 25 A	SL Zigzag (From case to first clipping point $=5.35 \mathrm{~mm}$)
C	DIPS	PFC; Bridge Free	600 V ; Active Low	Up to 30 A	One Side Zigzag (Lead length 6.8 mm version)
D	DIP05	PFC; Interleave	600 V ; Active Low	Up to 40 A	SL Bent
E	DIP2	PFC; Bridge Free Interleave	600 V ; Active Low	Up to 50 A	One Side Zigzag (With insert plate)
F	DIP4	PFC + 3-Phase Inverter; No Bridge	Up to 1200 V; Active Low	Up to 60 A	L Bent
G	DIP5	PFC + 4-Phase Inverter; With Bridge	1700 V; Active Low	Up to 75 A	SL Bent + Stopper
H	Tenmen Case Screw	PFC + 5-Phase Inverter; Bridge Free	-	75 A or Larger	-
J	Tenmen Case Terminal	PFC + 6-Phase Inverter; Interleave	-	Up to $1 \mathrm{~kW} / 5 \mathrm{~A}$	DIPS Bent (One side SL/One side SL Chidori; Lead length 5.5 mm version above case)
K	SIP2B	Power Conditioner; Converter	-	Up to $2 \mathrm{~kW} / 10 \mathrm{~A}$	One Side Zigzag (Lead length 9 mm version)
L	DIPS2	Power Conditioner; Inverter	600 V	Up to $3 \mathrm{~kW} / 15 \mathrm{~A}$	L-Zigzag (Smart 1st)
M	SIP3B	Power Conditioner; Converter + Inverter	600 V; Built-In 1 Shunt R	Up to $4 \mathrm{~kW} / 20 \mathrm{~A}$	Both Side Chidori (Smart 2nd bent)
N	New Package	Power Conditioner; Others	600 V; Built-In HVIC	Up to $5 \mathrm{~kW} / 25 \mathrm{~A}$	DIPS Bent (One side SL/One side SL Chidori; Lead length 9.7 mm version above case)
P	SIP3A	-	600 V; Built-In HVIC + Shunt R	Up to $6 \mathrm{~kW} / 30 \mathrm{~A}$	-
Q	DIPS3	3-Phase Inverter + Break; Built-In a Shunt R	1200 V	Up to $8 \mathrm{~kW} / 40 \mathrm{~A}$	-
R	DIPS3.5	3-Phase Inverter + Break; For External 3 Shunt Rs	1200 V; Built-In 1 Shunt R	Up to 10 kW	-
S	PQFN	CIB; Built-In a Shunt R	1200 V; Built-In HVIC	10 kW or Larger	-
T	SIP3A	CIB; For External 3 Shunt Rs	1200 V; Built-In HVIC + Shunt R	Up to 100 A	-
U	DIP-C2	-	-	Up to 150 A	-
v	DIP-C3	-	-	Up to 200 A	-

TND310

Naming Convention for SiC MOSFETs (EliteSiC)

Naming Convention for SiC Diodes (EliteSiC)

Naming Convention for DS and iPS Devices

Bluetooth is a registered trademark of Bluetooth SIG. MicroLeadless and FULLPAK are trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. ChipFET is a trademark of Vishay Siliconix. FETKY is a registered trademark of International Rectifier Corporation. PowerFLEX is a trademark of Texas Instruments Incorporated. POWERMITE is a registered trademark of and used under a license from Microsemi Corporation. All other brand names and product names appearing in this document are registered trademarks or trademarks of their respective holders.

 onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support
For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

[^0]: Notes:

 1. Not all packing forms are available for each product
 2. Contact onsemi Customer Service for more details
