*NDT014L ELECTRICAL MODEL (PowerSOT SOT-223 N-Ch DMOS) * ---------------------- .SUBCKT NDT014L 20 10 30 Rg 10 1 3 M1 2 1 3 3 DMOS L=1u W=1u .MODEL DMOS NMOS(VTO={1.5*{-0.0022*TEMP+1.055}} KP={-0.01*TEMP+5.45} + THETA=0.086 VMAX=2.2E5 LEVEL=3) Cgs 1 3 200p Rd 20 4 20m TC=0.0054 Dds 3 4 DDS .MODEL DDS D(BV={60*{0.00072*TEMP+0.982}} M=0.34 CJO=312p VJ=0.8) Dbody 3 20 DBODY .MODEL DBODY D(IS=1.4E-13 N=1 RS=116m TT=52n) Ra 4 2 50m TC=0.0054 Rs 3 5 10m Ls 5 30 5n M2 1 8 6 6 INTER E2 8 6 4 1 2 .MODEL INTER NMOS(VTO=0 KP=10 LEVEL=1) Cgdmax 7 4 500p Rcgd 7 4 10meg Dgd 6 4 DGD Rdgd 4 6 10meg .MODEL DGD D(M=0.54 CJO=500p VJ=0.214) M3 7 9 1 1 INTER E3 9 1 4 1 -2 .ENDS NDT014L * * * NDT014L THERMAL MODEL * --------------------- .SUBCKT 014LTHM 50 40 100 Rop 50 60 1meg ; From input power, use ideal Cop 60 70 1u IC=0 ; opamp to get energy W(t), E_W 40 70 40 60 1meg ; assume Rin=infinite & Ro=0 E_Pave 80 40 VALUE = {V(40,70)/(TIME+1n)} ; Get average power by W(t)/t R80 80 40 1k E_Tja 100 40 VALUE = {V(80,40)*110*V(90,40)}; Tja=Pave(t)*RJA*rja(t) R100 100 40 1k R90 90 40 1k E_rja 90 40 table {TIME} ; Normalized NDT014L Single Pulsed rja(t) + (0.0001, 0.002232) + (0.0002, 0.003156) + (0.0005, 0.00499) + (0.001, 0.007057) + (0.002, 0.00998) + (0.005, 0.01578) + (0.01, 0.022316) + (0.02, 0.03156) + (0.05, 0.049901) + (0.1, 0.070571) + (0.2, 0.099802) + (0.5, 0.157801) + (1, 0.223165) + (2, 0.304706) + (5, 0.430226) + (10, 0.532168) + (20, 0.641667) + (50, 0.789139) + (100, 0.876999) + (200, 0.940897) + (500, 1) + (999, 1) .ENDS 014LTHM