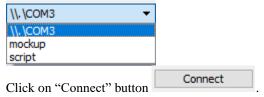
NCV78343 Evaluation Kit


Test Procedure

Required Equipment:

- Power supply
- Multimeter
- NCV78343_EVK_V4 board
- PC with installed SW control program
- Mini USB cable

Initial setup:

- 1. Connect power supply to VBAT (positive) and GND (negative) using 4mm banana plugs or barrel jack. Set voltage to 12 V with current limitation approximately 3 A and switch it on.
- 2. Connect mini USB cable to the ONMCU_DIL control board.
- 3. Start the GUI SW. In the status bar click on icon information about available virtual COM ports. Select the port where the EVK is connected:

www.onsemi.com

Test Procedure

• Visual Inspection of Board and Components

Results (Pass/Fail)	Estimated Time	Items and Critical points	Comments
	<60s	 No damaged board or component Not shorted component 	Only obvious issues can be found

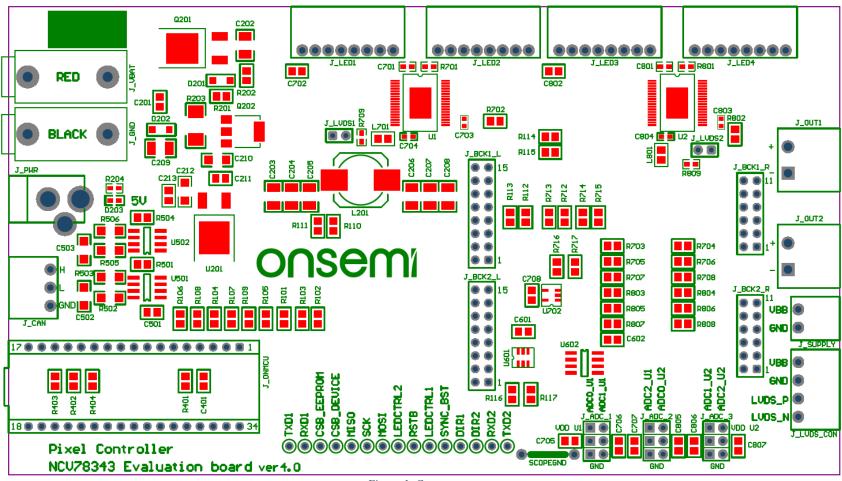


Figure 1. Components

Electrical characteristics testingSupply the kit with 5-24 V (typ. 12 V) and measure the voltage of VBB and VDD

> VBB

Results (Pass/Fail)	Estimated Time	Items and Critical points	Comments
	<60s	0 – 0.7 V lower than Vsupply	Voltage drop on reverse polarity protection

Figure 2. VBB nets

> VDD

Results (Pass/Fail)	Estimated Time	Items and Critical points	Comments
	<60s	3.45 V (typical)	3.15 V – 3.6 V

Figure 3. VDD nets

• Software characteristics testing

Once the evaluation kit is supplied and connected to the PC via mini USB cable.

Device must be addressed (using resistor divider, OTP memory address or auto-addressing).

> Read OPMODE CF6

Results (Pass/Fail)	Estimated Time	Items and Critical points	Comments
	<60s	An addressed device should provide valid OPMODE	Number in Address field should correspond to selected device addressing method.

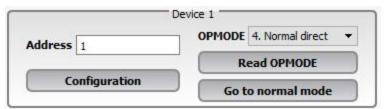


Figure 4. Read OPMODE

> Read VBOOST and VBAT voltages

Results (Pass/Fail)	Estimated Time	Items and Critical points	Comments
	<60s	1. VBOOST = ~50 V	Default values after startup
		2. $VBAT = \sim 12 V$	

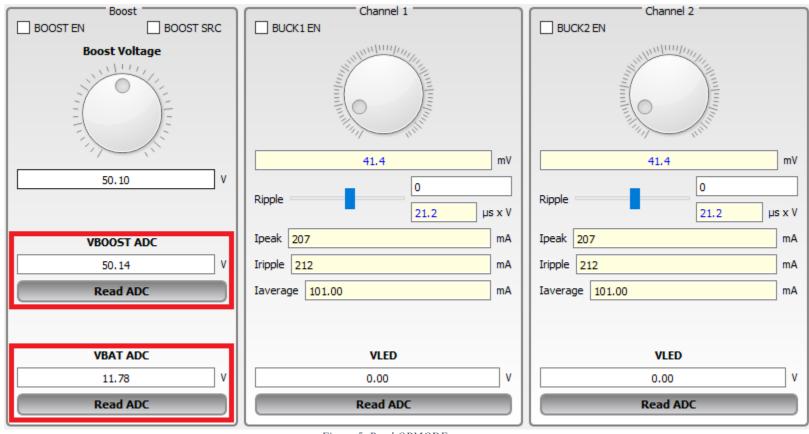


Figure 5. Read OPMODE

> Communication protocol

Results (Pass/Fail)	Estimated Time	Items and Critical points	Comments
	>5min	Communication corresponds to	
		transmitted commands.	

Open "Log" window available from the bottom menu. Whenever a user sends either read or write command to the chip, a command appears in the Log window.

Command pattern:

set SER2PXNDATA=0e03550101 set SER2PXNDATA=AABBCCDDEE

AA – the BREAK pulse length (number of Tbits)

BB – number of bytes to be written

CC – SYNC field of the communication protocol

DD – PID1 field of the communication protocol

EE – PID2 field of the communication protocol