DPDT USB 2.0 High Speed / Audio Switch with Negative Swing Capability Evaluation Board User's Manual

ON Semiconductor®

http://onsemi.com

EVAL BOARD USER'S MANUAL

Overview

The NS5S1153 is a DPDT switch for combined true-ground audio and USB 2.0 high speed data applications. It allows portable systems to use a single port to pass either USB data or audio signals from an external headset; headset; the two channels being compliant to USB 2.0, USB 1.1 and USB 1.0.

The switch is capable of passing signals with negative voltages as low as 2 V below ground. The device features

shunt resistors on the audio ports. These resistors are switched in when the audio channel is off and provide a safe path to ground for any charge that may build up on the audio lines. This reduces Pop & Click noise in the audio system. The NS5S1153 is also equipped with VBUS detection circuitry to immediately switch to USB mode in the event that a voltage is detected on VBUS.

The NS5S1153 is housed in a space saving, ultra low profile $1.4 \times 1.8 \times 0.5$ mm 10 pin μ QFN package.

Figure 1. Board Picture

NS5S1153 - BOARD SCHEMATIC

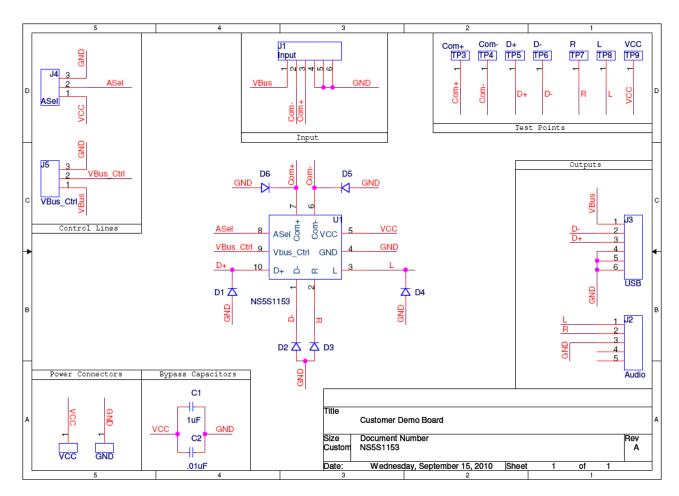


Figure 2. Board Schematic

Table 1. NS5S1153 - BOARD CONNECTIONS

Symbol	Description					
SUPPLY						
V _{CC} , GND	This is the positive and the return connection for power supply.					
SETUP						
J4 - ASEL	This is the line selection header.					
J5 – VBUS_CTRL	This is VBUS comparator input.					
SIGNALS						
J1 – INPUT	This USB connector Male A type is the common data and audio lines.					
J2 – AUDIO	This connector is a 3.5 mm Stereo Jack Connector.					
J3 – USB	This USB connector Male B type is the high speed USB signaling path.					

NS5S1153 - TEST PROCEDURE

Equipment needed

- Power Supply
- Digital Ohm Meter
- Desktop or Laptop with Windows XP or higher
- USB Memory Stick
- USB Type A to USB Type B

Table 2. BACKGROUND: ASEL AND VBUS TRUTH TABLE

A _{SEL}	V _{BUS}	L, R	D+, D-	L, R Shunt
Low	Low	ON	OFF	OFF
Low	High	OFF	ON	ON
High	Х	ON	OFF	OFF

Test

- 1. Connect ASEL to '0' (J4) and VBUS_CTRL to '1' (J5).
- 2. Connect the power supply at 3.6 V from VCC to GND. The supply current should be around 20 μ A. The impedance measured from COM+ (TP3) to D+ (TP5) is over 10 M Ω . The impedance measured from COM- (TP4) to D- (TP6) is over 10 M Ω .

The impedance measured from COM+ (TP3) to

R (TP7) is close to 3 Ω . The impedance measured from COM- (TP4) to L (TP8) is close to 3 Ω .

- Insert a USB cable from USB terminal (J3) to the laptop or desktop.
 The impedance measured from L (TP8) and R (TP7) to GND is closed to 118 Ω.
- 4. Place a USB Memory Stick connected to USB terminal (J1). The device is being recognized.

NS5S1153 – COMPONENTS SELECTION

Input Capacitor

A 0.1 μ F X5R ceramic capacitor or larger must bypass V_{CC} input to the ground. This capacitor should be placed as close as possible to this input.

ESD Diode

In order to protect the device against transient voltages, an external bi-directional ESD / IEC diode is recommended on COM+ and COM- pin. The ESD11N is designed to protect

voltage sensitive components that require ultra-low capacitance from ESD and transient voltage events. Excellent clamping capability, low capacitance, low leakage, and fast response time, make these parts ideal for ESD protection on designs where board space is at a premium. Because of its low capacitance, it is suited for use in high frequency designs such as USB 2.0 high speed and antenna line applications.

Table 3. NS5S1153 - BILL OF MATERIAL

Designator	Qty	Description	Value	Tolerance	Footprint	Manufacturer	Manufacturer Part Number
U1	1	NS5S1153	n/a	n/a	UQFN10	ON Semiconductor	NS5S1153
C1	1	Ceramic Capacitor SMD	1 μF	10%	0805	Murata	GRM155R60J105
C2	1	Ceramic Capacitor SMD	0.01 μF	10%	0402		
D1, D2, D3, D4, D5, D6	6	5V Bi-Directional TVS	n/a	n/a	DSN2	ON Semiconductor	ESD11N5
TP3, TP4,TP5, TP6, TP7, TP8, TP9	7	Test Point PC Multi Purpose	n/a	n/a	TP1	Keystone Electronics	5010
VCC, GND	2	Banana Connector	n/a	n/a	7 mm Hole	Johnson Components	111-2223-001
Vbus_Ctrl, Asel	2	50pin Modular 2pin header	n/a	n/a	Header3	Tyco Electronics	5-826629-0
Input J1	1	USB TypeA Connector	n/a	n/a	USB TypeA	Mill-Max	896-43-004-00-000000
USB J3	1	USB TypeB Connector	n/a	n/a	USB TypeB	Adam Tech	USB-B-S-RA
Audio J2	1	Stereo Audio Jack Connector	n/a	n/a	PHONO_S J3523	CUI Inc	SJ-3523-SMT
GND Bar	1	PCB Shorting Link	n/a	n/a	GND_Stra p	Harwin	D3082-46
PCB	1	55 x 40 mm 2 Layers	NA	NA	NA	Any	NS5S1153MUGEVB

NS5S1153 - PCB LAYOUT GUIDELINES

Electrical Layout Considerations

Implementing a high speed USD device requires paying attention on USB lines and traces to preserve signal integrity. The demonstration board serves as layout example and can support the design engineers to preserve high speed performances.

Electrical layout guidelines are:

- Bypass capacitor must as closed as possible to the Vcc input pin for noise immunity
- The characteristics impedance of each High Speed USB segment must be 45 Ω .
- All corresponding D+ / D- line segment pairs must be the same length.
- The use of vias to route these signals should be avoided.
- The use of turns or bends to route these signal should be avoided.
- The ground plane of the PCB will be used to determine the characteristics impedance of each line.

NS5S1153 – EVALUATION BOARD PCB LAYOUT

Board Reference: NS5S1153MUGEVB

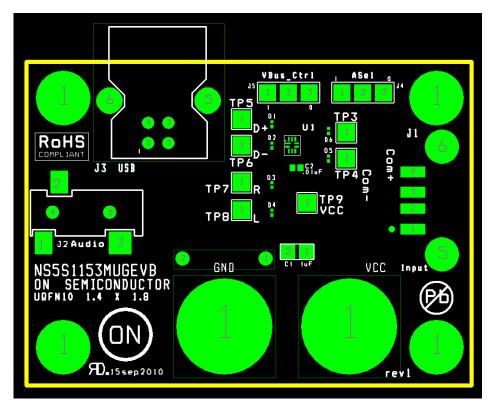


Figure 3. Assembly Layer

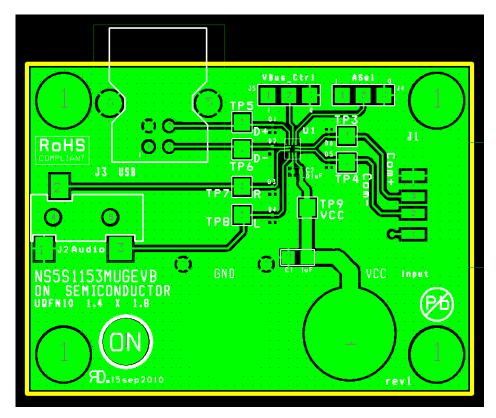


Figure 4. Top Layer Routing

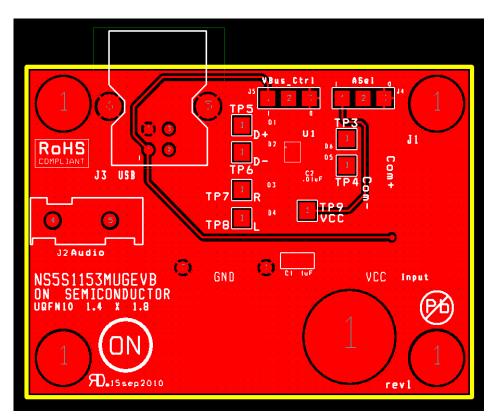


Figure 5. Bottom Layer Routing

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

The evaluation board/kit (research and development board/kit) (hereinafter the "board") is not a finished product and is not available for sale to consumers. The board is only intended for research, development, demonstration and evaluation purposes and will only be used in laboratory/development areas by persons with an engineering/technical training and familiar with the risks associated with handling electrical/mechanical components, systems and subsystems. This person assumes full responsibility/liability for proper and safe handling. Any other use, resale or redistribution for any other purpose is strictly prohibited.

THE BOARD IS PROVIDED BY ONSEMI TO YOU "AS IS" AND WITHOUT ANY REPRESENTATIONS OR WARRANTIES WHATSOEVER. WITHOUT LIMITING THE FOREGOING, ONSEMI (AND ITS LICENSORS/SUPPLIERS) HEREBY DISCLAIMS ANY AND ALL REPRESENTATIONS AND WARRANTIES IN RELATION TO THE BOARD, ANY MODIFICATIONS, OR THIS AGREEMENT, WHETHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING WITHOUT LIMITATION ANY AND ALL REPRESENTATIONS AND WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, AND THOSE ARISING FROM A COURSE OF DEALING, TRADE USAGE, TRADE CUSTOM OR TRADE PRACTICE.

onsemi reserves the right to make changes without further notice to any board.

You are responsible for determining whether the board will be suitable for your intended use or application or will achieve your intended results. Prior to using or distributing any systems that have been evaluated, designed or tested using the board, you agree to test and validate your design to confirm the functionality for your application. Any technical, applications or design information or advice, quality characterization, reliability data or other services provided by **onsemi** shall not constitute any representation or warranty by **onsemi**, and no additional obligations or liabilities shall arise from **onsemi** having provided such information or services.

onsemi products including the boards are not designed, intended, or authorized for use in life support systems, or any FDA Class 3 medical devices or medical devices with a similar or equivalent classification in a foreign jurisdiction, or any devices intended for implantation in the human body. You agree to indemnify, defend and hold harmless onsemi, its directors, officers, employees, representatives, agents, subsidiaries, affiliates, distributors, and assigns, against any and all liabilities, losses, costs, damages, judgments, and expenses, arising out of any claim, demand, investigation, lawsuit, regulatory action or cause of action arising out of or associated with any unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of any products and/or the board.

This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and may not meet the technical requirements of these or other related directives.

FCC WARNING – This evaluation board/kit is intended for use for engineering development, demonstration, or evaluation purposes only and is not considered by **onsemi** to be a finished end product fit for general consumer use. It may generate, use, or radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment may cause interference with radio communications, in which case the user shall be responsible, at its expense, to take whatever measures may be required to correct this interference.

onsemi does not convey any license under its patent rights nor the rights of others.

LIMITATIONS OF LIABILITY: **onsemi** shall not be liable for any special, consequential, incidental, indirect or punitive damages, including, but not limited to the costs of requalification, delay, loss of profits or goodwill, arising out of or in connection with the board, even if **onsemi** is advised of the possibility of such damages. In no event shall **onsemi**'s aggregate liability from any obligation arising out of or in connection with the board, under any theory of liability, exceed the purchase price paid for the board, if any.

The board is provided to you subject to the license and other terms per **onsemi**'s standard terms and conditions of sale. For more information and documentation, please visit www.onsemi.com.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales