# NLAS7222C High-Speed USB 2.0 (480 Mbps) DPDT Switch Evaluation Board User's Manual



## ON Semiconductor®

http://onsemi.com

### **EVAL BOARD USER'S MANUAL**

#### Introduction

This evaluation board has been designed for a quick evaluation of the NLAS7222C. The NLAS7222C is a 2-to-1 analog switch designed for USB 2.0 signals, as shown in the block diagram in Figure 1 on the right. Among its main characteristics, this evaluation board has been constructed to easily interface with a customer's systems and equipment through USB connectors. The evaluation board can be seen in Figure 2 below.

This manual provides a bill of materials, board schematic, and a layout overview of the evaluation board. The appropriate setup to evaluate the device is also provided.

This document must be used with the NLAS7222C datasheet available on <a href="www.onsemi.com">www.onsemi.com</a>. The datasheet contains full technical details about the specifications and operation of the device. When the intention is to evaluate the device considering the specifications given in the datasheet, it is important to take into account the additional circuitry which may include changes in the characteristic impedance matching.

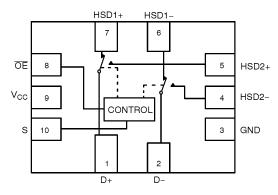



Figure 1. Block Diagram of NCN7222C



Figure 2. Evaluation Board

#### **TEST PROCEDURE**

### **Equipment**

- DC Power Supply
- Two Banana Cables
- Computer with USB port
- USB Flash Drive
- USB Cable (Type A to Type B)

#### **Procedure**

- Set the power supply to 3.3 V. Connect the power supply from VCC to GND using the banana cables. The supply current should be less than 1 uA.
- 2. Connect the USB drive to the **Common I/O** USB port.

- 3. Select the desired output port (**HSD1** or **HSD2**) by moving the jumpers to the appropriate logic level for **S** and  $\overline{OE}$ , as shown in the function table in Table 1.
- 4. Connect the USB cable from the desired output port (HSD1 or HSD2) to the computer's USB port. You will now be able to access the USB drive through the computer.

**Table 1. FUNCTION TABLE** 

| ŌĒ | s | HSD1+,<br>HSD1- | HSD2+,<br>HSD2- |
|----|---|-----------------|-----------------|
| 1  | X | OFF             | OFF             |
| 0  | 0 | ON              | OFF             |
| 0  | 1 | OFF             | ON              |

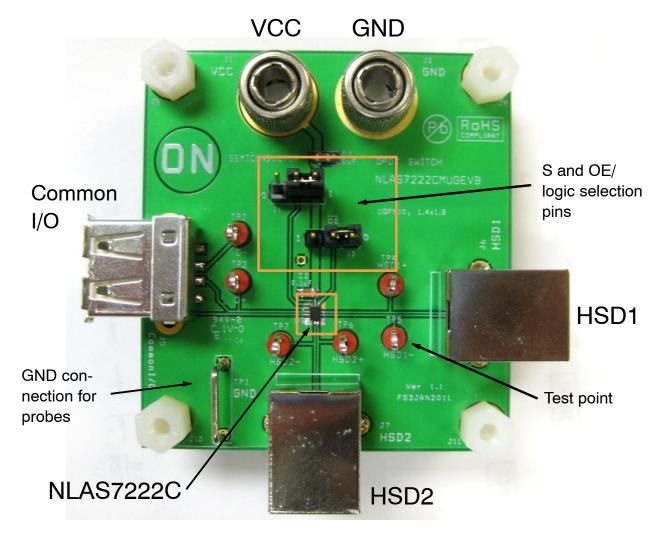



Figure 3. Evaluation Board Close-Up

# **SCHEMATIC**

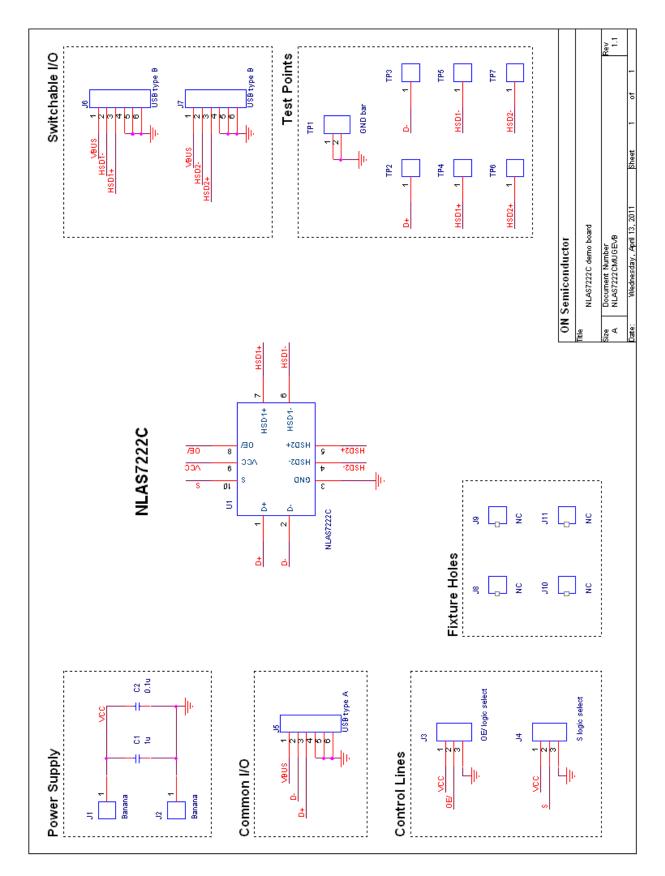



Figure 4. Evaluation Board Schematic

### **Table 2. BILL OF MATERIALS**

| Desig-<br>nator                          | Qty | Description                    | Value  | Toler-<br>ance | Foot-<br>print | Manufacturer            | Manufacturer Part Number |
|------------------------------------------|-----|--------------------------------|--------|----------------|----------------|-------------------------|--------------------------|
| C1                                       | 1   | Ceramic Capacitor<br>SMD       | 1 μF   | 10%            | 0805           | AVX                     | GRM155R60J105            |
| C2                                       | 1   | Ceramic Capacitor<br>SMD       | 0.1 μF | 10%            | 0402           | Yageo                   | CC0402ZRY5V7BB104        |
| J1, J2                                   | 2   | Banana Connector               | n/a    | n/a            | 7 mm<br>Hole   | Johnson<br>Components   | 111-2223-001             |
| J3, J4                                   | 2   | 3-Pin Header                   | n/a    | n/a            | Header3        | Tyco Electronics        | 5-826629-0               |
| J3, J4                                   | 2   | 2-Pin Jumper                   | n/a    | n/a            | n/a            | Tyco Electronics        | 4-881545-2               |
| J5                                       | 1   | USB TypeA Connector            | n/a    | n/a            | USB<br>TypeA   | Mill-Max                | 896-43-004-00-000000     |
| J6, J7                                   | 2   | USB TypeB Connector            | n/a    | n/a            | USB<br>TypeB   | Adam Tech               | USB-B-S-RA               |
| J8, J9,<br>J10, J11                      | 4   | Standoff Nut                   | n/a    | n/a            | n/a            | Keystone<br>Electronics | 1903C                    |
| J8, J9,<br>J10, J11                      | 4   | Standoff Screw                 | n/a    | n/a            | n/a            | Keystone<br>Electronics | 4814K-ND                 |
| TP1                                      | 1   | PCB Shorting Link              | n/a    | n/a            | n/a            | Harwin                  | D3082-46                 |
| TP2,<br>TP3,<br>TP4,<br>TP5,<br>TP6, TP7 | 6   | Test Point PC Multi<br>Purpose | n/a    | n/a            | 1.6mm<br>hole  | Keystone<br>Electronics | 5010                     |
| U1                                       | 1   | NLAS7222C                      | n/a    | n/a            | UQFN10         | ON Semiconductor        | NLAS7222CMUTBG           |

#### **PCB LAYOUT**

The PCB and components are made of lead-free and RoHS compliant materials. The layout is shown in Figure 5 below. The top layer traces are shown in magenta, and the

bottom layer traces are shown in cyan. Ground pours are present on the top and bottom layers for connectivity. PCB dimensions are 53 mm x 58 mm x 1 mm.

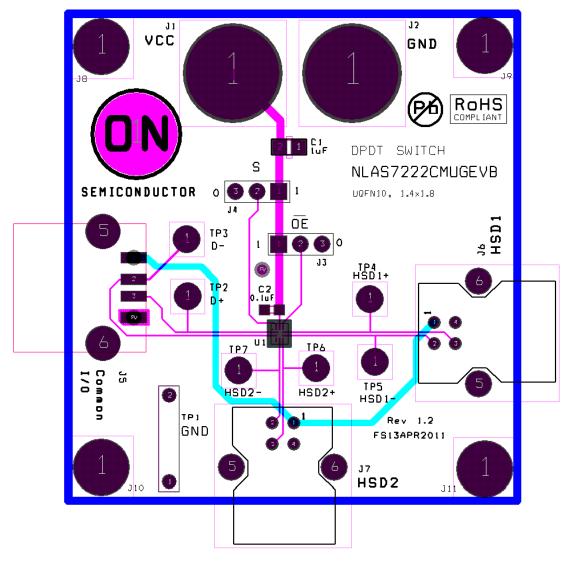



Figure 5. Evaluation Board Layout

### **PCB LAYOUT GUIDELINES**

Implementing a high speed USB switch device requires paying attention on data lines and traces to preserve signal integrity. The demonstration board serves as layout example and can support the design engineers to preserve high speed performances.

Electrical layout guidelines are:

- The bypass capacitor must be placed as close as possible to the V<sub>CC</sub> input pin for noise immunity.
- The characteristics impedance of each switch segment must be 45  $\Omega$ .

- The ground plane of the PCB will be used to determine the characteristics impedance of each line.
- All corresponding D+/D- line segment pairs must be the same length.
- The use of vias to route these signals should be avoided when possible.
- The use of turns or bends to route these signal should be avoided when possible.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="https://www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

The evaluation board/kit (research and development board/kit) (hereinafter the "board") is not a finished product and is not available for sale to consumers. The board is only intended for research, development, demonstration and evaluation purposes and will only be used in laboratory/development areas by persons with an engineering/technical training and familiar with the risks associated with handling electrical/mechanical components, systems and subsystems. This person assumes full responsibility/liability for proper and safe handling. Any other use, resale or redistribution for any other purpose is strictly prohibited.

THE BOARD IS PROVIDED BY ONSEMI TO YOU "AS IS" AND WITHOUT ANY REPRESENTATIONS OR WARRANTIES WHATSOEVER. WITHOUT LIMITING THE FOREGOING, ONSEMI (AND ITS LICENSORS/SUPPLIERS) HEREBY DISCLAIMS ANY AND ALL REPRESENTATIONS AND WARRANTIES IN RELATION TO THE BOARD, ANY MODIFICATIONS, OR THIS AGREEMENT, WHETHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING WITHOUT LIMITATION ANY AND ALL REPRESENTATIONS AND WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, AND THOSE ARISING FROM A COURSE OF DEALING, TRADE USAGE, TRADE CUSTOM OR TRADE PRACTICE.

onsemi reserves the right to make changes without further notice to any board.

You are responsible for determining whether the board will be suitable for your intended use or application or will achieve your intended results. Prior to using or distributing any systems that have been evaluated, designed or tested using the board, you agree to test and validate your design to confirm the functionality for your application. Any technical, applications or design information or advice, quality characterization, reliability data or other services provided by **onsemi** shall not constitute any representation or warranty by **onsemi**, and no additional obligations or liabilities shall arise from **onsemi** having provided such information or services.

onsemi products including the boards are not designed, intended, or authorized for use in life support systems, or any FDA Class 3 medical devices or medical devices with a similar or equivalent classification in a foreign jurisdiction, or any devices intended for implantation in the human body. You agree to indemnify, defend and hold harmless onsemi, its directors, officers, employees, representatives, agents, subsidiaries, affiliates, distributors, and assigns, against any and all liabilities, losses, costs, damages, judgments, and expenses, arising out of any claim, demand, investigation, lawsuit, regulatory action or cause of action arising out of or associated with any unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of any products and/or the board.

This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and may not meet the technical requirements of these or other related directives.

FCC WARNING – This evaluation board/kit is intended for use for engineering development, demonstration, or evaluation purposes only and is not considered by **onsemi** to be a finished end product fit for general consumer use. It may generate, use, or radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment may cause interference with radio communications, in which case the user shall be responsible, at its expense, to take whatever measures may be required to correct this interference.

onsemi does not convey any license under its patent rights nor the rights of others.

LIMITATIONS OF LIABILITY: **onsemi** shall not be liable for any special, consequential, incidental, indirect or punitive damages, including, but not limited to the costs of requalification, delay, loss of profits or goodwill, arising out of or in connection with the board, even if **onsemi** is advised of the possibility of such damages. In no event shall **onsemi**'s aggregate liability from any obligation arising out of or in connection with the board, under any theory of liability, exceed the purchase price paid for the board, if any.

The board is provided to you subject to the license and other terms per **onsemi**'s standard terms and conditions of sale. For more information and documentation, please visit www.onsemi.com.

#### **ADDITIONAL INFORMATION**

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales