

Silicon Carbide (SiC) JFET – EliteSiC, Power N-Channel, TO247-3, 1200 V, 66 mohm

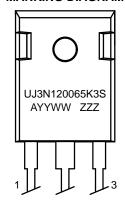
UJ3N120065K3S

Description

onsemi offers the high-performance G3 SiC normally-on JFET transistors. This series exhibits ultra-low on resistance ($R_{DS(on)}$) and gate charge (Q_G) allowing for low conduction and switching loss. The device normally-on characteristics with low $R_{DS(on)}$ at $V_{GS}=0$ V is also ideal for current protection circuits without the need for active control, as well as for cascode operation.

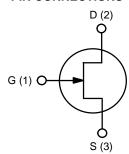
Features

- $\bullet\,$ Typical On-resistance $R_{DS(on),typ}$ of 66 $m\Omega$
- Voltage Controlled
- Maximum Operating Temperature of 175 °C
- Extremely Fast Switching not Dependent on Temperature
- Low Gate Charge
- Low Intrinsic Capacitance
- This Device is Pb-Free, Halogen Free and is ROHS Compliant


Typical Applications

- Over Current Protection Circuits
- DC-AC Inverters
- Switch Mode Power Supplies
- Power Factor Correction Modules
- Motor Drives
- Induction Heating

TO247-3 CASE 340AK


MARKING DIAGRAM

UJ3N120065K3S = Specific Device Code A = Assembly Location

YY = Year WW = Work Week ZZZ = Lot ID

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information on page 7 of this data sheet.

MAXIMUM RATINGS

Parameter	Symbol	Test Conditions	Value	Unit
Drain-source Voltage	V _{DS}		1200	V
Gate-source Voltage	V_{GS}	DC	-20 to +3	V
		AC (Note 1)	-30 to +20	V
Continuous Drain Current (Note 2)	I _D	T _C = 25 °C	34	Α
		T _C = 100 °C	25	Α
Pulsed Drain Current (Note 3)	I _{DM}	T _C = 25 °C	90	Α
Power Dissipation	P _{tot}	T _C = 25 °C	254	W
Maximum Junction Temperature	$T_{J,max}$		175	°C
Operating and Storage Temperature	T _J , T _{STG}		-55 to 175	°C
Max. Lead Temperature for Soldering, 1/8" from Case for 5 Seconds	TL		250	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. +20 V AC rating applies for turn-on pulses < 200 ns applied with external R_G > 1 Ω.

2. Limited by T_{J,max}

3. Pulse width tp limited by T_{J,max}

THERMAL CHARACTERISTICS

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Thermal Resistance, Junction-to-case	$R_{\theta JC}$		_	0.45	0.59	°C/W

ELECTRICAL CHARACTERISTICS (T_J = +25 °C unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
TYPICAL PERFORMANCE – STATIC	•	•	•			
Drain-source Breakdown Voltage	BV _{DS}	$V_{GS} = -20 \text{ V}, I_D = 1 \text{ mA}$	1200	_	_	V
Total Drain Leakage Current	I _{DSS}	$V_{DS} = 1200 \text{ V}, V_{GS} = -20 \text{ V},$ $T_{J} = 25 ^{\circ}\text{C}$	_	5	30	μΑ
		$V_{DS} = 1200 \text{ V}, V_{GS} = -20 \text{ V},$ $T_{J} = 175 \text{ °C}$	-	56	-	
Total Gate Leakage Current	I _{GSS}	$V_{GS} = -20 \text{ V}, T_J = 25 ^{\circ}\text{C}$	-	0.1	50	μΑ
		V_{GS} = -20 V, T_J = 175 °C	_	1	-	
Drain-source On-resistance	R _{DS(on)}	$V_{GS} = 2 \text{ V}, I_D = 10 \text{ A}, T_J = 25 ^{\circ}\text{C}$	_	55	-	mΩ
		V _{GS} = 0 V, I _D = 10 A, T _J = 25 °C	_	66	90	
		V _{GS} = 2 V, I _D = 10 A, T _J = 175 °C	_	122	-	
		V _{GS} = 0 V, I _D = 10 A, T _J = 175 °C	_	142	-	
Gate Threshold Voltage	$V_{G(th)}$	$V_{DS} = 5 \text{ V}, I_D = 35 \text{ mA}$	-9.3	-6.6	-4.7	V
Gate Resistance	R_{G}	f = 1 MHz, open drain	_	2.6	-	Ω
TYPICAL PERFORMANCE – DYNAMIC						
Input Capacitance	C _{iss}	$V_{DS} = 100 \text{ V}, V_{GS} = -20 \text{ V},$	_	1008	-	pF
Output Capacitance	C _{oss}	f = 100 kHz	_	100	-	
Reverse Transfer Capacitance	C _{rss}		_	95	-	
Effective Output Capacitance, Energy Related	C _{oss(er)}	$V_{DS} = 0 \text{ V to } 800 \text{ V}, V_{GS} = -20 \text{ V}$	_	56	-	pF
C _{OSS} Stored Energy	E _{oss}	$V_{DS} = 800 \text{ V}, V_{GS} = -20 \text{ V}$	_	18	-	μJ
Total Gate Charge	Q_G	$V_{DS} = 800 \text{ V}, I_{D} = 25 \text{ A},$	-	114	-	nC
Gate-drain Charge	Q_{GD}	$V_{GS} = -18 \text{ V to } 0 \text{ V}$	_	75	-	
Gate-source Charge	Q _{GS}		_	16	-	
Turn-on Delay Time	t _{d(on)}	V _{DS} = 800 V, I _D = 25 A,	_	32	-	ns
Rise Time	t _r	Gate Driver = -18 V to 0 V , R _G = 1Ω , Inductive Load,	_	43	-	
Turn-off Delay Time	t _{d(off)}	FWD: UJ2D1215T T _{.1} = 25 °C	_	19	-	
Fall Time	t _f	1,1 = 20 0	_	16	-	
Turn-on Energy	E _{ON}		_	785	-	μJ
Turn-off Energy	E _{OFF}		_	150	-	
Total Switching Energy	E _{TOTAL}		_	935	-	
Turn-on Delay Time	t _{d(on)}	$V_{DS} = 800 \text{ V}, I_{D} = 25 \text{ A},$	-	28	-	ns
Rise Time	t _r	Gate Driver = -18 V to 0 V, R _G = 1 Ω , Inductive Load,	_	42	-	
Turn-off Delay Time	t _{d(off)}	FWD: UJ2D1215T T _{.1} = 150 °C	_	18	-	
Fall Time	t _f		_	15	_	1
Turn-on Energy	E _{ON}		_	730	_	μJ
Turn-off Energy	E _{OFF}		_	146	_]
Total Switching Energy	E _{TOTAL}		_	876	_	1

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL PERFORMANCE DIAGRAMS

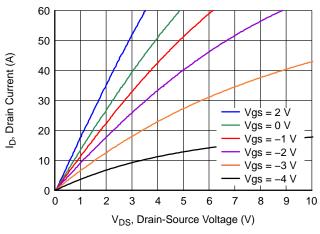


Figure 1. Typical Output Characteristics at T $_J$ = -55 °C, t_p < 250 μs

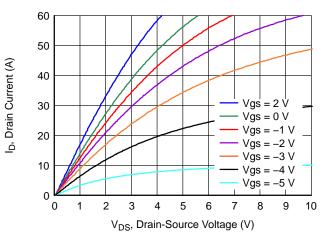


Figure 2. Typical Output Characteristics at T_J = 25 °C, t_n < 250 μs

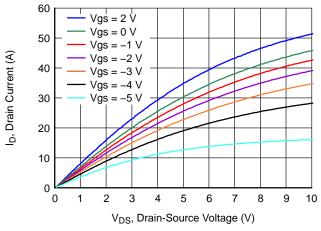


Figure 3. Typical Output Characteristics at T $_{J}$ = 175 °C, t_{p} < 250 μs

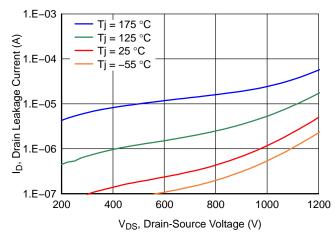


Figure 4. Typical Drain-source Leakage at $V_{GS} = -20 \text{ V}$

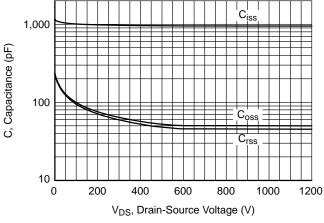


Figure 5. Typical Capacitances at f = 100 kHz and V_{GS} = -20 V

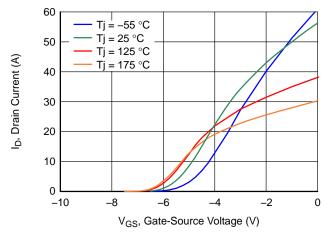


Figure 6. Typical Transfer Characteristics at V_{DS} = 5 V

TYPICAL PERFORMANCE DIAGRAMS (CONTINUED)

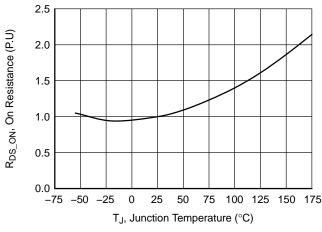


Figure 7. Normalized On-resistance vs. Junction Temperature at V_{GS} = 0 V and I_{D} = 10 mA

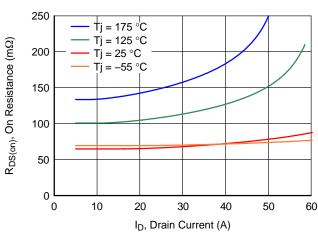


Figure 8. Typical Drain-source On-resistances at $V_{GS} = 0 \text{ V}$

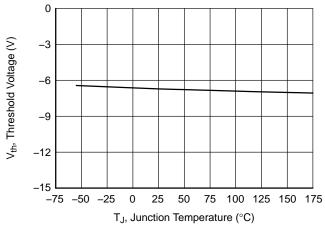


Figure 9. Threshold Voltage vs. Junction Temperature at $\rm V_{DS} = 5~V$ and $\rm I_D = 35~mA$

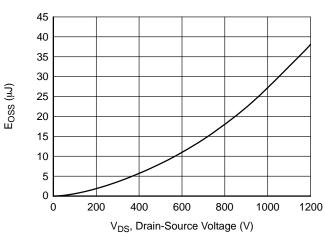


Figure 10. Typical Stored Energy in C_{OSS} at V_{GS} = -20 V

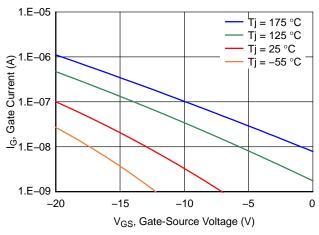


Figure 11. Typical Gate Leakage at V_{DS} = 0 V

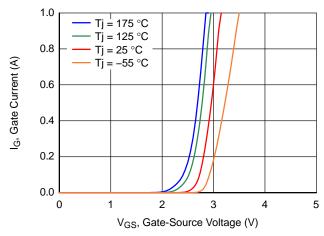


Figure 12. Typical Gate Forward Current at V_{DS} = 0 V

TYPICAL PERFORMANCE DIAGRAMS (CONTINUED)

DC Drain Current (A)

ؽ

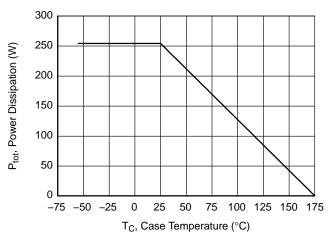


Figure 13. Total Power Dissipation

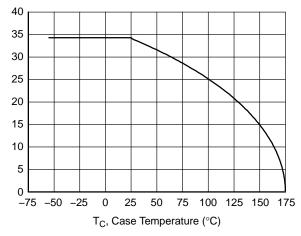


Figure 14. DC Drain Current Derating

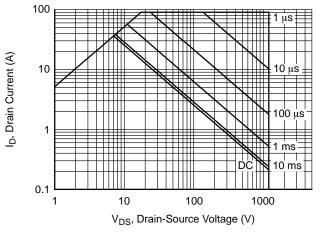
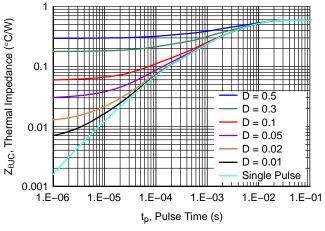



Figure 15. Safe Operation Area at $T_C = 25$ °C, Parameter t_D

Figure 16. Maximum Transient Thermal Impedance

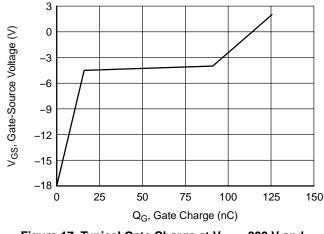


Figure 17. Typical Gate Charge at V_{DS} = 800 V and I_{D} = 25 A

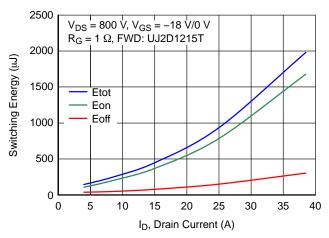


Figure 18. Clamped Inductive Switching Energy vs. Drain Current at $T_J = 25$ °C

TYPICAL PERFORMANCE DIAGRAMS (CONTINUED)

2500

 $V_{DS} = 800 \text{ V}, V_{GS} = -18 \text{ V/O V},$ $I_{D} = 25 \text{ A}, T_{J} = 25 ^{\circ}\text{C},$ FWD: UJ2D1215T 2000 Switching Energy (μJ) 1500 Etot 1000 Eon Eoff 500 0 0 10 12 R_G , Gate Resistor (Ω)

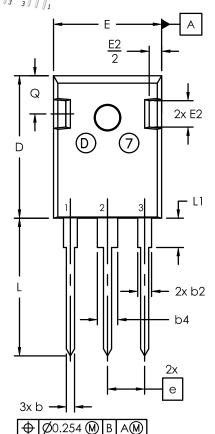
Figure 19. Clamped Inductive Switching Energy vs. Junction Temperature at V_{DS} = 800 V and I_D = 25 A

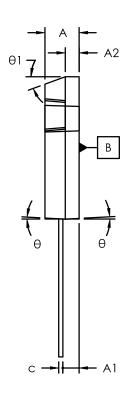
Figure 20. Clamped Inductive Switching Energy vs. Gate Resistor R_G

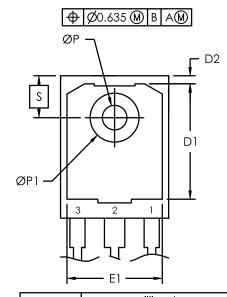
ORDERING INFORMATION

Part Number	Marking	Package	Shipping [†]
UJ3N120065K3S	UJ3N120065K3S	TO247-3 15.90x20.96x5.03, 5.44P (Pb-Free, Halogen Free)	600 / Tube

REVISION HISTORY


Revision	Description of Changes	Date
В	Acquired the original Qorvo JFET Division Data Sheet and updated the main document title to comply with onsemi standards for SiC products.	1/15/2025
2	Converted the Data Sheet to onsemi format.	6/4/2025





TO247-3 15.90x20.96x5.03, 5.44P CASE 340AK ISSUE B

DATE 14 APR 2025

SYM	millimeters				
317/1	MIN	NOM	MAX		
Α	4.70	5.03	5.31		
A1	2.21	2.40	2.59		
A2	1.50	2.03	2.49		
b	0.99	1.20	1.40		
b2	1.65	2.03	2.39		
b4	2.59	3.00	3.43		
ОО	0.38	0.60	0.89		
D	20.70	20.96	21.46		
D1	13.08	ı	ı		
D2	0.51	1.19	1.35		
Е	15.49	15.90	16.26		
е		5.44 BSC			
E1	13.00	13.30	13.60		
E2	3.43	3.89	5.20		
L	19.62	20.27	20.32		
L1	ı	ı	4.50		
ØP	3.40	3.60	3.80		
ØP1	7.06	7.19	7.39		
Q	5.38	5.62	6.20		
S	6.15 BSC				
Φ	3°				
θ1	20°				
θ2	10°				

θ2

NOTE:

- 1. Dimensioning and tolerancing as per ASME Y14.5 2018
- 2. Controlling dimension: millimeters
- 3. Package Outline in compliance with JEDEC standard var. AD.
- 4. Dimensions D & E does not include mold flash.
- 5. ØP to have max draft angle of 1.7° to the top with max. hole diameter of 3.91mm.

DOCUMENT NUMBER:	98AON88794E	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO247-3 15.90x20.96x5.03, 5.44P		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales