

Silicon Carbide (SiC) Diode – EliteSiC, TO220-2, 2 A, 1200 V SiC Merged PiN-Schottky (MPS) Diode

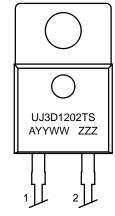
UJ3D1202TS

Description

onsemi offers the 3rd generation of high performance SiC Merged-PiN-Schottky (MPS) diodes. With zero reverse recovery charge and 175 °C maximum junction temperature, these diodes are ideally suited for high frequency and high efficiency power systems with minimum cooling requirements.

Features

- Maximum Operating Temperature of 175 °C
- Easy Paralleling
- Extremely Fast Switching not Dependent on Temperature
- No Reverse or Forward Recovery
- Enhanced Surge Current Capability, MPS Structure
- Excellent Thermal Performance, Ag Sintered
- 100% UIS Tested
- This Device is Pb-Free, Halogen Free and is ROHS Compliant


Typical Applications

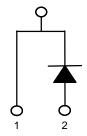
- Power Converters
- Industrial Motor Drives
- Switch Mode Power Supplies
- Power Factor Correction Modules

TO220-2 CASE 340AZ

MARKING DIAGRAM

UJ3D1202TS

= Specific Device Code


YY

= Assembly Location = Year

WW ZZZ = Work Week

= Lot ID

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.

UJ3D1202TS

MAXIMUM RATINGS

Parameter	Symbol	Test Conditions	Value	Unit
DC Blocking Voltage	V_R		1200	V
Repetitive Peak Reverse Voltage, T _J = 25 °C	V_{RRM}		1200	V
Surge Peak Reverse Voltage	V_{RSM}		1200	V
Maximum DC Forward Current	Ι _F	T _C = 164 °C	2	А
Non-repetitive Forward Surge Current Sine	I _{FSM}	$T_C = 25 ^{\circ}\text{C}, t_p = 10 \text{ms}$	30	А
Halfwave		$T_C = 110 {}^{\circ}\text{C}, t_p = 10 \text{ms}$	27	
Repetitive Forward Surge Current Sine Halfwave, D = 0.1	I _{FRM}	$T_C = 25 ^{\circ}C, t_p = 10 \text{ms}$	14.8	А
		$T_C = 110 ^{\circ}\text{C}, t_p = 10 \text{ms}$	8.8	
Non-repetitive Peak Forward Current	I _{F,max}	$T_C = 25 {}^{\circ}\text{C}, t_p = 10 \mu\text{s}$	250	А
		$T_C = 110 {}^{\circ}\text{C}, t_p = 10 \mu\text{s}$	250	
i ² t Value	∫i ² dt	$T_C = 25 ^{\circ}\text{C}, t_p = 10 \text{ms}$	4.5	A ² s
		$T_C = 110 ^{\circ}\text{C}, t_p = 10 \text{ms}$	3.6	
Power Dissipation	P _{tot}	T _C = 25 °C	75	W
		T _C = 164 °C	5.5	
Maximum Junction Temperature	$T_{J,max}$		175	°C
Operating and Storage Temperature	T _J , T _{STG}		-55 to 175	°C
Soldering Temperatures, Wavesoldering only Allowed at Leads	T _{sold}	1.6 mm from case for 10 s	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

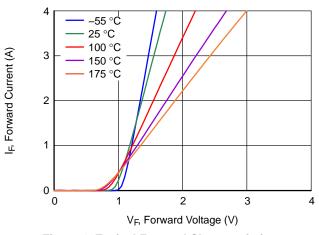
THERMAL CHARACTERISTICS

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$		_	1.5	2	°C/W

ELECTRICAL CHARACTERISTICS (T_J = +25 °C unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Forward Voltage	V _F	I _F = 2 A, T _J = 25 °C	-	1.4	1.6	V
		I _F = 2 A, T _J = 150 °C	-	1.85	2.3	1
		I _F = 2 A, T _J = 175 °C	-	2	2.6	1
Reverse Current	I _R	V _R = 1200 V, T _J = 25 °C	-	2	22	μΑ
		V _R = 1200 V, T _J = 175 °C	-	60	_	1
Total Capacitive Charge (Note 1)	Q _C	V _R = 800 V	-	12	_	nC
Total Capacitance	С	V _R = 1 V, f = 1 MHz	-	109	_	pF
		V _R = 400 V, f = 1 MHz	-	11.5	_	1
		V _R = 800 V, f = 1 MHz	-	9.8	_	1
Capacitance Stored Energy	E _C	V _R = 800 V	-	3.6	_	μJ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


1. Q_C is independent on T_J, di_F/dt, and I_F as shown in the application note AND90316/D

UJ3D1202TS

TYPICAL PERFORMANCE DIAGRAMS

I_F, Forward Current (A)

P_{Tot}, Power Dissipation (W)

Figure 1. Typical Forward Characteristics

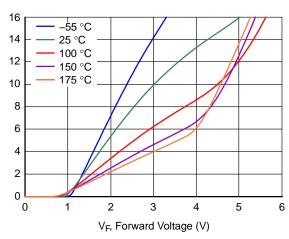
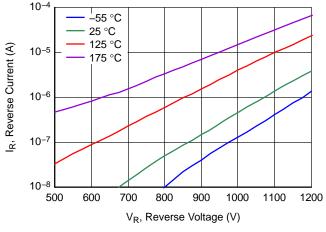



Figure 2. Typical Forward Characteristics in Surge Current

Figure 3. Typical Reverse Characteristics

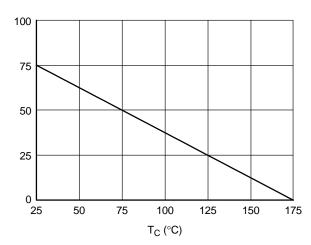


Figure 4. Power Dissipation

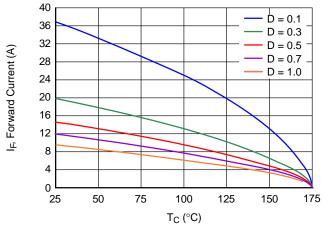


Figure 5. Diode Forward Current

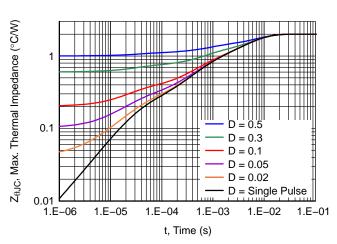


Figure 6. Maximum Transient Thermal Impedance

UJ3D1202TS

TYPICAL PERFORMANCE DIAGRAMS (CONTINUED)

 Q_{C} (nC)

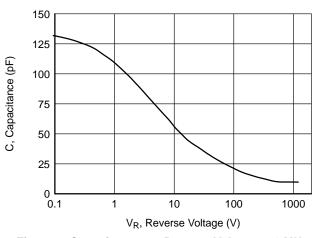


Figure 7. Capacitance vs. Reverse Voltage at 1 MHz

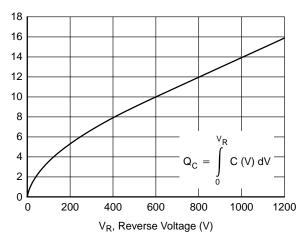


Figure 8. Typical Capacitive Charge vs. Reverse Voltage

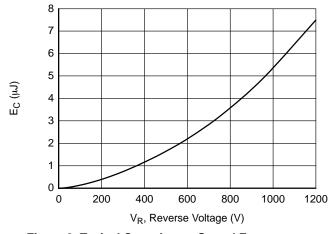


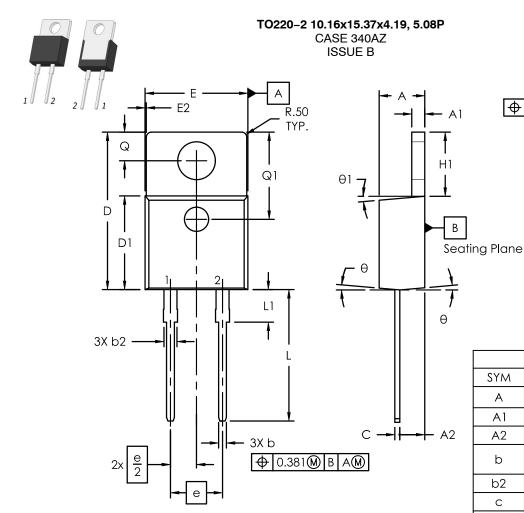
Figure 9. Typical Capacitance Stored Energy vs. Reverse Voltage

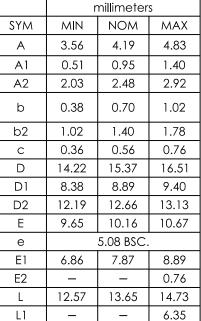
ORDERING INFORMATION

Part Number	Marking	Package	Shipping
UJ3D1202TS	UJ3D1202TS	TO220-2 (Pb-Free, Halogen Free)	1000 / Tube

→ 0.381(M) B

D2




DATE 23 APR 2025

A(M)

Ε1

ØΡ

Н1

Q

Q1

θ

θ1

3.53

5.84

2.54

8.38

3.81

6.35

2.98

8.51

5°

5°

4.09

6.86

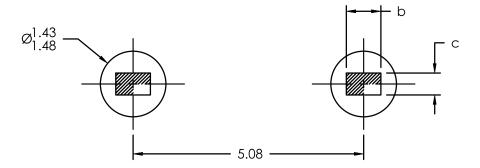
3.43

8.64

NOTES:

R.30

- 1. Dimensioning and Tolerancing as per ASME Y14.5M, 2018.
- 2. Controlling Dimension: Millimeters
- Dimensions D and E does not include Mold Flash. These dimensions are measure at the outermost extreme of the plastic body.
- 4. Through hole diameter value = End Hole Diameter
- 5. PCB through hole pattern as per IPC-2222


DOCUMENT NUMBER:	98AON13830G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO220-2 10.16x15.37x4.19, 5.08P		PAGE 1 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

TO220-2 10.16x15.37x4.19, 5.08P CASE 340AZ ISSUE B

DATE 23 APR 2025

RECOMMENDED PCB PATTERN

NOTE: LAND PATTERN AND THROUGH HOLE DIMENSIONS SERVE ONLY AS AN INITIAL GUIDE. END-USER PCB DESIGN RULES AND TOLERANCES SHOULD ALWAYS PREVAIL.

DOCUMENT NUMBER:	98AON13830G	BAON13830G Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO220-2 10.16x15.37x4.19, 5.08P		PAGE 2 OF 2	

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales