Plastic Infrared Light Emitting Diode

QED223

Description
The QED223 is 880 nm AlGaAs LEDs encapsulated in a clear purple tinted, plastic T−1 3/4 package.

Features
• $\lambda = 880$ nm
• Chip Material = AlGaAs
• Package Type: T−1 3/4 (5 mm lens diameter)
• Matched Photosensor: QSD123/QSD124
• Medium wide Emission Angle, 30°
• High Output Power
• Package Material and Color: Clear, Purple Tinted, Plastic

ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOPR</td>
<td>Operating Temperature</td>
<td>−40 to 100</td>
<td>°C</td>
</tr>
<tr>
<td>TSTG</td>
<td>Storage Temperature</td>
<td>−40 to +100</td>
<td>°C</td>
</tr>
<tr>
<td>TSOI</td>
<td>Soldering Temperature (Iron)</td>
<td>240 for 5 s</td>
<td>°C</td>
</tr>
<tr>
<td>TSOF</td>
<td>Soldering Temperature (Flow)</td>
<td>260 for 10 s</td>
<td>°C</td>
</tr>
<tr>
<td>IF</td>
<td>Continuous Forward Current</td>
<td>100</td>
<td>mA</td>
</tr>
<tr>
<td>VR</td>
<td>Reverse Voltage</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>PD</td>
<td>Power Dissipation (Note 1)</td>
<td>200</td>
<td>mW</td>
</tr>
<tr>
<td>IF(Peak)</td>
<td>Peak Forward Current (Note 5)</td>
<td>1.5</td>
<td>V</td>
</tr>
</tbody>
</table>

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Derate power dissipation linearly 2.67 mW/°C above 25°C.
2. RMA flux is recommended.
3. Methanol or Isopropyl alcohols are recommended as cleaning agents.
4. Soldering iron tip 1/16” (1.6 mm) minimum from housing.
5. Pulse conditions; $t_p = 100$ μs, $T = 10$ ms.

ELECTRICAL/OPTICAL CHARACTERISTICS (TA = 25°C)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_{PE}</td>
<td>Peak Emission Wavelength</td>
<td>$I_F = 20$ mA</td>
<td>−</td>
<td>890</td>
<td>−</td>
<td>nm</td>
</tr>
<tr>
<td>T_{cl}</td>
<td>Temperature Coefficient</td>
<td>−</td>
<td>0.2</td>
<td>−</td>
<td>nm/°C</td>
<td></td>
</tr>
<tr>
<td>$2\Theta_{1/2}$</td>
<td>Emission Angle</td>
<td>$I_F = 100$ mA</td>
<td>−</td>
<td>30</td>
<td>−</td>
<td>°</td>
</tr>
<tr>
<td>V_F</td>
<td>Forward Voltage</td>
<td>$I_F = 20$ mA, $t_p = 20$ ms</td>
<td>−</td>
<td>−</td>
<td>1.7</td>
<td>V</td>
</tr>
<tr>
<td>T_{CVF}</td>
<td>Temperature Coefficient</td>
<td>−</td>
<td>−6</td>
<td>−</td>
<td>mV/°C</td>
<td></td>
</tr>
<tr>
<td>I_R</td>
<td>Reverse Current</td>
<td>$V_R = 5$ V</td>
<td>−</td>
<td>−</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>I_E</td>
<td>Radiant Intensity</td>
<td>$I_F = 20$ mA, $t_p = 20$ ms</td>
<td>25</td>
<td>−</td>
<td>−</td>
<td>mW/sr</td>
</tr>
<tr>
<td>T_{CIE}</td>
<td>Temperature Coefficient</td>
<td>−</td>
<td>−0.3</td>
<td>−</td>
<td>%/°C</td>
<td></td>
</tr>
<tr>
<td>t_r</td>
<td>Rise Time</td>
<td>$I_F = 100$ mA</td>
<td>−</td>
<td>900</td>
<td>−</td>
<td>ns</td>
</tr>
<tr>
<td>t_f</td>
<td>Fall Time</td>
<td>$I_F = 100$ mA</td>
<td>−</td>
<td>800</td>
<td>−</td>
<td>ns</td>
</tr>
<tr>
<td>C_J</td>
<td>Junction Capacitance</td>
<td>$V_R = 0$ V</td>
<td>−</td>
<td>11</td>
<td>−</td>
<td>pF</td>
</tr>
</tbody>
</table>

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
TYPICAL PERFORMANCE CURVES

Figure 1. Normalized Intensity vs. Wavelength

Figure 2. Peak Wavelength vs. Ambient Temperature

Figure 3. Normalized Radiant Intensity vs. Forward Current

Figure 4. Normalized Radiant Intensity vs. Ambient Temperature

Figure 5. Forward Voltage vs. Forward Current

Figure 6. Forward Voltage vs. Ambient Temperature

Normalized to:
- $I_F = 20$ mA Pulsed
- $t_{PW} = 20$ ms
- Duty Cycle = 4%
- $T_A = 25^\circ$C
TYPICAL PERFORMANCE CURVES (continue)

Figure 7. Radiation Diagram

Figure 8. Coupling Characteristics of QED22X and QSD22X

Normalized to:
- \(d = 0 \) inch
- Pulse Width = 100 \(\mu \)s
- Duty Cycle = 0.1%
- \(V_{CC} = 5 \) V
- \(R_L = 100 \) \(\Omega \)
- \(T_A = 25^\circ \)C

\(I_F = 100 \) mA
\(I_F = 20 \) mA

Lens Tip Separation (in) vs. \(I_{C(ON)} = \text{Normalized Collector Current} \)
T-1 3/4, 5MM LED
CASE 100CC
ISSUE 0

DATE 30 NOV 2016

Notes:

1. Dimensions for all drawings are in inches (mm).
2. Tolerance of ±0.010 (0.25) on all non-nominal dimensions unless otherwise specified.