

Silicon Carbide (SiC) Schottky Diode – EliteSiC, 40 A, 1200 V, D1, Die

PCFFS40120AF

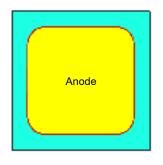
Description

Silicon Carbide (SiC) Schottky Diodes use a completely new technology that provides superior switching performance and higher reliability compared to Silicon. No reverse recovery current, temperature dependent switching characteristics, and excellent thermal performance sets Silicon Carbide as the next generation of power semiconductor. System benefits include highest efficiency, faster operation frequency, increased power density, reduced EMI, and reduced system size and cost.

Features

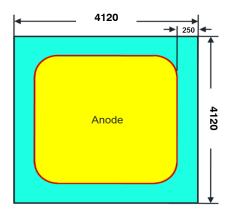
- Max Junction Temperature 175°C
- Avalanche Rated 420 mJ
- High Surge Current Capacity
- Positive Temperature Coefficient
- Ease of Paralleling
- No Reverse Recovery/No Forward Recovery

Applications


- · General Purpose
- SMPS, Solar Inverter, UPS
- Power Switching Circuits

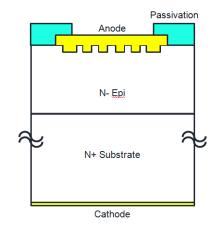
Die Information

- Wafer Diameter: 6 inch
- Die Size: 4,200 × 4,200 μm (include Scribe Lane)
- Metallization:
 - Top Ti/TiN/AlCu 4 μm
 - ♦ Back Ti/NiV/Ag
- Die Thickness: Typ. 200 μm
- · Bonding Pad Size
 - Anode 3,620 × 3,620 μm
- Recommended Wire Bond (Note 1)
 - ♦ Anode: 20 mil × 3


NOTE:

1. Based on TO-247 package of **onsemi**.

DIE LAYOUT


(Dimension: µm, Except Scribe Lane)

Passivation Information

- Passivation Material: Polymide (PSPI)
- · Passivation Type: Local Passivation
- Passivation Thickness: 90KA

CROSS SECTION

ORDERING INFORMATION

Part Number	Package	Die Size
PCFFS40120AF	N/A	4,200 x 4,200 μm (Include Scribe Lane)

1

ELECTRICAL CHARACTERISTICS ON WAFER ($T_C = 25^{\circ}C$ unless otherwise noted) (Note 2)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
V _R	Reverse Blocking Voltage	$I_R = 200 \ \mu A, T_C = 25^{\circ}C$	1200	-	_	V
V _F	Forward Voltage	I _F = 40 A, T _C = 25°C	1.20	-	1.75	V
I _R	Reverse Current	V _R = 1200 V, T _C = 25°C	-	ı	200	μΑ

^{2.} Tested 100% on wafer.

The Configuration of Chips (Based on 6" Wafer)

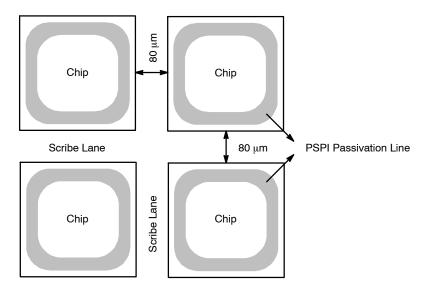


Figure 1. Saw-on-film Frame Packing Based on Tested Wafer

ABSOLUTE MAXIMUM RATINGS ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Value	Unit	
V_{RRM}	Peak Repetitive Reverse Voltage	1200	V	
E _{AS}	Single Pulse Avalanche Energy	(Note 3)	420	mJ
I _F	Continuous Rectified Forward Current @ T _C <	40	Α	
	Continuous Rectified Forward Current @ T _C <	61		
I _{F, Max}	Non-Repetitive Peak Forward Surge Current	T _C = 25°C, 10 μs	1650	Α
		T _C = 150°C, 10 μs	1550	Α
I _{F,SM}	Non-Repetitive Forward Surge Current	Half-Sine Pulse, t _p = 8.3 ms	270	А
I _{F,RM}	Repetitive Forward Surge Current	Half-Sine Pulse, t _p = 8.3 ms	120	А
Ptot	Power Dissipation	T _C = 25°C	682	W
		T _C = 150°C	114	W
T _J , T _{STG}	Operating and Storage Temperature Range	age Temperature Range		°C
	TO247 Mounting Torque, M3 Screw		60	Ncm

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

3. E_{AS} of 420 mJ is based on starting T_J = 25°C, L = 0.5 mH, I_{AS} = 41 A, V = 50 V.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case, Max	0.22	°C/W

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
V_{F}	Forward Voltage	I _F = 40 A, T _C = 25°C	-	1.45	1.75	V
		I _F = 40 A, T _C = 125°C	-	1.7	2.0	
		I _F = 40 A, T _C = 175°C	-	2.0	2.4	
I _R	Reverse Current	V _R = 1200 V, T _C = 25°C	-	=	200	μΑ
		V _R = 1200 V, T _C = 125°C	-	=	300	
		V _R = 1200 V, T _C = 175°C	-	=	400	
$Q_{\mathbb{C}}$	Total Capacitive Charge	V = 800 V	-	220	=	nC
С	Total Capacitance	V _R = 1 V, f = 100 kHz	-	2250	=	pF
		V _R = 400 V, f = 100 kHz	-	204	-	
		V _R = 800 V, f = 100 kHz	-	169	-	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

(T_J = 25°C UNLESS OTHERWISE NOTED)

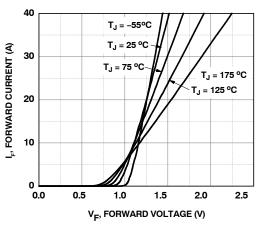


Figure 2. Forward Characteristics

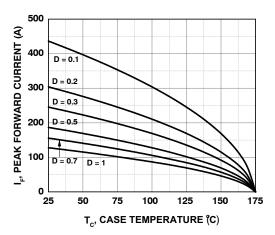


Figure 4. Current Derating

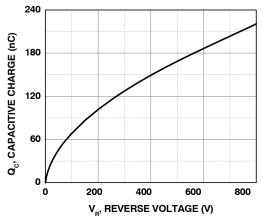


Figure 6. Capacitive Charge vs. Reverse Voltage

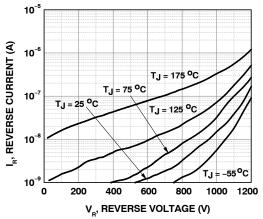


Figure 3. Reverse Characteristics

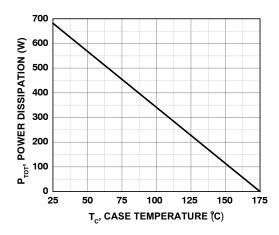


Figure 5. Power Derating

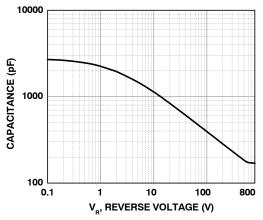


Figure 7. Capacitance vs. Reverse Voltage

TYPICAL CHARACTERISTICS

(T_J = 25°C UNLESS OTHERWISE NOTED)

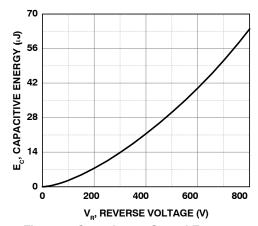


Figure 8. Capacitance Stored Energy

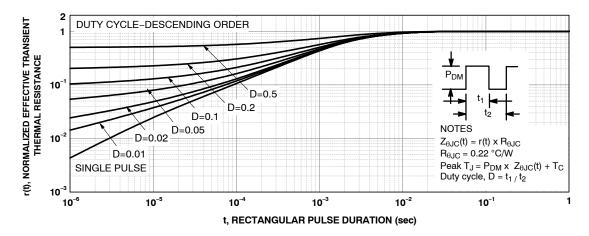


Figure 9. Junction-to-Case Transient Thermal Response Curve

TEST CIRCUIT AND WAVEFORMS

L = 0.5 mH $R < 0.1 \Omega$ $V_{DD} = 50 \text{ V}$ $EAVL = 1/2LI2 \left[V_{R(AVL)} / \left(V_{R(AVL)} - V_{DD} \right) \right]$ $Q1 = IGBT \left(BV_{CES} > DUT V_{R(AVL)} \right)$ V_{AVL} CURRENT SENSE V_{DD} DUT V_{DD} V_{DD} V_{DD} V_{DD} V_{DD} V_{DD}

Figure 10. Unclamped Inductive Switching Test Circuit & Waveform

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales