Si/SiC Hybrid Module – EliteSiC, Dual Boost,
1200 V, 40 A IGBT + 1200 V,
15 A SiC Diode, Q0 Package
NXH80B120H2Q0

The NXH80B120H2Q0 is a high-density, integrated power module combines high-performance IGBTs with rugged anti-parallel diodes including on-board thermistor.

Features
• Dual Boost 40 A / 1200 V IGBT + SiC Rectifier Hybrid Module
• 1200 V FSII IGBT $V_{CE(SAT)} = 2.2$ V
• 1200 V SiC Diode $V_F = 1.4$ V
• Low Inductive Layout
• Solderable Pins
• Thermistor
• Bare Copper and Nickel-Plated DBC Options

Typical Applications
• Solar Inverter
• Uninterruptible Power Supplies
• Energy Storage Systems

Figure 1. NXH80B120H2Q0SG Schematic Diagram
Table 1. ABSOLUTE MAXIMUM RATINGS (Note 1) $T_J = 25^\circ C$ unless otherwise noted

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector–Emitter Voltage</td>
<td>V_{CES}</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>Gate–Emitter Voltage</td>
<td>V_{GE}</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Collector Current @ $T_h = 80^\circ C$ ($T_J = 175^\circ C$)</td>
<td>I_C</td>
<td>41</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed Collector Current ($T_J = 175^\circ C$)</td>
<td>I_{Cpulse}</td>
<td>123</td>
<td>A</td>
</tr>
<tr>
<td>Maximum Power Dissipation @ $T_h = 80^\circ C$ ($T_J = 175^\circ C$)</td>
<td>P_{tot}</td>
<td>103</td>
<td>W</td>
</tr>
<tr>
<td>Short Circuit Withstand Time @ $V_{GE} = 15$ V, $V_{CE} = 600$ V, $T_J \leq 150^\circ C$</td>
<td>T_{sc}</td>
<td>5</td>
<td>μs</td>
</tr>
<tr>
<td>Minimum Operating Junction Temperature</td>
<td>T_{JMIN}</td>
<td>−40</td>
<td>$^\circ C$</td>
</tr>
<tr>
<td>Maximum Operating Junction Temperature</td>
<td>T_{JMAX}</td>
<td>150</td>
<td>$^\circ C$</td>
</tr>
</tbody>
</table>

BOOST DIODE

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Forward Current @ $T_h = 80^\circ C$ ($T_J = 175^\circ C$)</td>
<td>I_F</td>
<td>28</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive Peak Forward Current limited by T_J, duty cycle = 10%</td>
<td>I_{FRM}</td>
<td>75</td>
<td>A</td>
</tr>
<tr>
<td>Maximum Power Dissipation @ $T_h = 80^\circ C$ ($T_J = 175^\circ C$)</td>
<td>P_{tot}</td>
<td>79</td>
<td>W</td>
</tr>
<tr>
<td>Surge Forward Current (60 Hz single half–sine wave) ($T_J = 25^\circ C$)</td>
<td>I_{FSM}</td>
<td>69</td>
<td>A</td>
</tr>
<tr>
<td>I^2t value (60 Hz single half–sine wave) ($T_J = 150^\circ C$)</td>
<td>I^2t</td>
<td>19</td>
<td>A^2s</td>
</tr>
<tr>
<td>Minimum Operating Junction Temperature</td>
<td>T_{JMIN}</td>
<td>−40</td>
<td>$^\circ C$</td>
</tr>
<tr>
<td>Maximum Operating Junction Temperature</td>
<td>T_{JMAX}</td>
<td>150</td>
<td>$^\circ C$</td>
</tr>
</tbody>
</table>

BYPASS DIODE / IGBT PROTECTION DIODE

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td>1600</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Forward Current @ $T_h = 80^\circ C$ ($T_J = 175^\circ C$)</td>
<td>I_F</td>
<td>46</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive Peak Forward Current ($T_J = 175^\circ C$, t_p limited by T_{Jmax})</td>
<td>I_{FRM}</td>
<td>130</td>
<td>A</td>
</tr>
<tr>
<td>Power Dissipation Per Diode @ $T_h = 80^\circ C$ ($T_J = 175^\circ C$)</td>
<td>P_{tot}</td>
<td>66</td>
<td>W</td>
</tr>
<tr>
<td>Minimum Operating Junction Temperature</td>
<td>T_{JMIN}</td>
<td>−40</td>
<td>$^\circ C$</td>
</tr>
<tr>
<td>Maximum Operating Junction Temperature</td>
<td>T_{JMAX}</td>
<td>150</td>
<td>$^\circ C$</td>
</tr>
</tbody>
</table>

THERMAL PROPERTIES

<table>
<thead>
<tr>
<th>Rating</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature range</td>
<td>T_{stg}</td>
<td>−40 to 125</td>
</tr>
</tbody>
</table>

INSULATION PROPERTIES

<table>
<thead>
<tr>
<th>Rating</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation test voltage, $t = 1$ sec, 60 Hz</td>
<td>V_{Is}</td>
<td>3000</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td>12.7</td>
</tr>
</tbody>
</table>

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

Table 2. RECOMMENDED OPERATING RANGES

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Operating Junction Temperature</td>
<td>T_J</td>
<td>−40</td>
<td>($T_{Jmax} - 25$)</td>
<td>$^\circ C$</td>
</tr>
</tbody>
</table>

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
Table 3. ELECTRICAL CHARACTERISTICS \(T_J = 25^\circ C \) unless otherwise noted

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOST IGBT CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector–Emitter Cutoff Current</td>
<td>(V_{GE} = 0 , V, , V_{CE} = 1200 , V)</td>
<td>(I_{CES})</td>
<td>–</td>
<td>–</td>
<td>200</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Collector–Emitter Saturation Voltage</td>
<td>(V_{GE} = 15 , V, , I_{C} = 40 , A, , T_J = 25^\circ C)
(V_{GE} = 15 , V, , I_{C} = 40 , A, , T_J = 150^\circ C)</td>
<td>(V_{CESat})</td>
<td>–</td>
<td>2.20</td>
<td>2.5</td>
<td>V</td>
</tr>
<tr>
<td>Gate–Emitter Threshold Voltage</td>
<td>(V_{GE} = V_{CE}, , I_{C} = 1.5 , mA)</td>
<td>(V_{GE(TH)})</td>
<td>–</td>
<td>5.45</td>
<td>6.4</td>
<td>V</td>
</tr>
<tr>
<td>Gate Leakage Current</td>
<td>(V_{GE} = 20 , V, , V_{CE} = 0 , V)</td>
<td>(I_{GES})</td>
<td>–</td>
<td>–</td>
<td>200</td>
<td>nA</td>
</tr>
<tr>
<td>Turn–on Delay Time</td>
<td>(T_J = 25^\circ C)
(V_{CE} = 700 , V, , I_{C} = 40 , A)
(V_{GE} = \pm 15 , V, , R_{G} = 4 , \Omega)</td>
<td>(I_{d(on)})</td>
<td>–</td>
<td>27</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>Rise Time</td>
<td></td>
<td>(t_r)</td>
<td>–</td>
<td>19</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Turn–off Delay Time</td>
<td></td>
<td>(I_{d(off)})</td>
<td>–</td>
<td>94</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Fall Time</td>
<td></td>
<td>(t_f)</td>
<td>–</td>
<td>78</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Turn–on Switching Loss per Pulse</td>
<td></td>
<td>(E_{on})</td>
<td>–</td>
<td>540</td>
<td>–</td>
<td>(\mu J)</td>
</tr>
<tr>
<td>Turn–off Switching Loss per Pulse</td>
<td></td>
<td>(E_{off})</td>
<td>–</td>
<td>1640</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Turn–on Delay Time</td>
<td>(T_J = 125^\circ C)
(V_{CE} = 700 , V, , I_{C} = 40 , A)
(V_{GE} = \pm 15 , V, , R_{G} = 4 , \Omega)</td>
<td>(I_{d(on)})</td>
<td>–</td>
<td>27</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>Rise Time</td>
<td></td>
<td>(t_r)</td>
<td>–</td>
<td>20</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Turn–off Delay Time</td>
<td></td>
<td>(I_{d(off)})</td>
<td>–</td>
<td>110</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Fall Time</td>
<td></td>
<td>(t_f)</td>
<td>–</td>
<td>189</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Turn–on Switching Loss per Pulse</td>
<td></td>
<td>(E_{on})</td>
<td>–</td>
<td>620</td>
<td>–</td>
<td>(\mu J)</td>
</tr>
<tr>
<td>Turn–off Switching Loss per Pulse</td>
<td></td>
<td>(E_{off})</td>
<td>–</td>
<td>3590</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>(V_{CE} = 25 , V, , V_{GE} = 0 , V, , f = 10 , kHz)</td>
<td>(C_{ies})</td>
<td>–</td>
<td>9700</td>
<td>–</td>
<td>pF</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td></td>
<td>(C_{des})</td>
<td>–</td>
<td>200</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Reverse Transfer Capacitance</td>
<td></td>
<td>(C_{res})</td>
<td>–</td>
<td>170</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Total Gate Charge</td>
<td>(V_{CE} = 600 , V, , I_{C} = 40 , A, , V_{GE} = 15 , V)</td>
<td>(Q_{g})</td>
<td>–</td>
<td>400</td>
<td>–</td>
<td>nC</td>
</tr>
<tr>
<td>Thermal Resistance – chip–to–heatsink</td>
<td>Thermal grease, Thickness < 100 (\mu m), (\lambda = 0.84 , W/mK)</td>
<td>(R_{thUH})</td>
<td>–</td>
<td>0.92</td>
<td>–</td>
<td>(^\circ C/W)</td>
</tr>
<tr>
<td>BOOST DIODE CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode Reverse Leakage Current</td>
<td>(V_R = 1200 , V)</td>
<td>(I_R)</td>
<td>–</td>
<td>–</td>
<td>300</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Diode Forward Voltage</td>
<td>(I_F = 15 , A, , T_J = 25^\circ C)
(I_F = 15 , A, , T_J = 150^\circ C)</td>
<td>(V_F)</td>
<td>–</td>
<td>1.42</td>
<td>1.7</td>
<td>V</td>
</tr>
<tr>
<td>Reverse Recovery Time</td>
<td>(T_J = 25^\circ C)
(V_{CE} = 700 , V, , I_{C} = 40 , A)
(V_{GE} = \pm 15 , V, , R_{G} = 4 , \Omega)</td>
<td>(t_{rr})</td>
<td>–</td>
<td>27</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse Recovery Charge</td>
<td></td>
<td>(Q_{rr})</td>
<td>–</td>
<td>280</td>
<td>–</td>
<td>nC</td>
</tr>
<tr>
<td>Peak Reverse Recovery Current</td>
<td></td>
<td>(I_{RRM})</td>
<td>–</td>
<td>16</td>
<td>–</td>
<td>A</td>
</tr>
<tr>
<td>Peak Rate of Fall of Recovery Current</td>
<td>(dI/dt)</td>
<td>–</td>
<td>1080</td>
<td>–</td>
<td>A/(\mu s)</td>
<td></td>
</tr>
<tr>
<td>Reverse Recovery Energy</td>
<td></td>
<td>(E_{rr})</td>
<td>–</td>
<td>130</td>
<td>–</td>
<td>(\mu J)</td>
</tr>
<tr>
<td>Reverse Recovery Time</td>
<td>(T_J = 125^\circ C)
(V_{CE} = 700 , V, , I_{C} = 40 , A)
(V_{GE} = \pm 15 , V, , R_{G} = 4 , \Omega)</td>
<td>(t_{rr})</td>
<td>–</td>
<td>28</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse Recovery Charge</td>
<td></td>
<td>(Q_{rr})</td>
<td>–</td>
<td>250</td>
<td>–</td>
<td>nC</td>
</tr>
<tr>
<td>Peak Reverse Recovery Current</td>
<td></td>
<td>(I_{RRM})</td>
<td>–</td>
<td>15</td>
<td>–</td>
<td>A</td>
</tr>
<tr>
<td>Peak Rate of Fall of Recovery Current</td>
<td>(dI/dt)</td>
<td>–</td>
<td>940</td>
<td>–</td>
<td>A/(\mu s)</td>
<td></td>
</tr>
<tr>
<td>Reverse Recovery Energy</td>
<td></td>
<td>(E_{rr})</td>
<td>–</td>
<td>110</td>
<td>–</td>
<td>(\mu J)</td>
</tr>
<tr>
<td>Thermal Resistance – chip–to–heatsink</td>
<td>Thermal grease, Thickness < 100 (\mu m), (\lambda = 0.84 , W/mK)</td>
<td>(R_{thUH})</td>
<td>–</td>
<td>1.21</td>
<td>–</td>
<td>(^\circ C/W)</td>
</tr>
<tr>
<td>BYPASS DIODE/IGBT PROTECTION DIODE CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode Reverse Leakage Current</td>
<td>(V_R = 1600 , V, , T_J = 25^\circ C)</td>
<td>(I_R)</td>
<td>–</td>
<td>–</td>
<td>100</td>
<td>(\mu A)</td>
</tr>
</tbody>
</table>
Table 3. ELECTRICAL CHARACTERISTICS \(T_J = 25^\circ\text{C} \) unless otherwise noted

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYPASS DIODE/IGBT PROTECTION DIODE CHARACTERISTICS</td>
<td>(I_F = 25 \text{ A}, T_J = 25^\circ\text{C})</td>
<td>(V_F)</td>
<td>–</td>
<td>1.0</td>
<td>1.4</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(I_F = 25 \text{ A}, T_J = 150^\circ\text{C})</td>
<td>–</td>
<td>0.90</td>
<td></td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance – chip–to–heatsink</td>
<td>Thermal grease, Thickness < 100 (\mu\text{m}), (\lambda = 0.84 \text{ W/mK})</td>
<td>(R_{\text{BJH}})</td>
<td>–</td>
<td>1.44</td>
<td>–</td>
<td>°C/W</td>
</tr>
<tr>
<td>THERMISTOR CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal resistance</td>
<td></td>
<td>(R_{25})</td>
<td>–</td>
<td>22</td>
<td>–</td>
<td>kΩ</td>
</tr>
<tr>
<td>Deviation of (R_{25})</td>
<td></td>
<td>(\Delta R/R)</td>
<td>–5</td>
<td>–</td>
<td>5</td>
<td>%</td>
</tr>
<tr>
<td>Power dissipation</td>
<td></td>
<td>(P_D)</td>
<td>–</td>
<td>200</td>
<td>–</td>
<td>mW</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td></td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>mW/K</td>
</tr>
<tr>
<td>B–value (\text{B}(25/50)), tolerance ±3%</td>
<td></td>
<td>–</td>
<td>3950</td>
<td>–</td>
<td>–</td>
<td>K</td>
</tr>
<tr>
<td>B–value (\text{B}(25/100)), tolerance ±3%</td>
<td></td>
<td>–</td>
<td>3998</td>
<td>–</td>
<td>–</td>
<td>K</td>
</tr>
</tbody>
</table>

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Part Number</th>
<th>Marking</th>
<th>Package</th>
<th>Shipping</th>
</tr>
</thead>
<tbody>
<tr>
<td>NXH80B120H2Q0SG</td>
<td>NXH80B120H2Q0SG</td>
<td>Q0BOOST – Case 180AJ Bare Copper DBC, Solder Pins (Pb–Free and Halide–Free)</td>
<td>24 Units / Blister Tray</td>
</tr>
<tr>
<td>NXH80B120H2Q0SNG</td>
<td>NXH80B120H2Q0SNG</td>
<td>Q0BOOST – Case 180AJ Nickel–Plated DBC, Solder Pins (Pb–Free and Halide–Free)</td>
<td>24 Units / Blister Tray</td>
</tr>
</tbody>
</table>
TYPICAL CHARACTERISTICS – BOOST IGBT & BOOST DIODE

Figure 1. IGBT Typical Output Characteristics

Figure 2. IGBT Typical Output Characteristics

Figure 3. IGBT Typical Transfer Characteristics

Figure 4. Diode Forward Characteristic

Figure 5. Typical Turn On Loss vs. IC

Figure 6. Typical Turn Off Loss vs. IC
TYPICAL CHARACTERISTICS – BOOST IGBT & BOOST DIODE

Figure 7. Typical Switching Times vs. IC

Figure 8. Typical Switching Times vs. IC

Figure 9. Typical Reverse Recovery Time vs. IC

Figure 10. Typical Reverse Recovery Charge vs. IC

Figure 11. Typical Reverse Recovery Peak Current vs. IC

Figure 12. Typical Diode Current Slope vs. IC
TYPICAL CHARACTERISTICS – BOOST IGBT & BOOST DIODE

Figure 13. Typical Reverse Recovery Energy vs. IC

Figure 14. Gate Voltage vs. Gate Charge

Figure 15. IGBT Transient Thermal Impedance

Figure 16. Diode Transient Thermal Impedance Boost Diode
TYPICAL CHARACTERISTICS – BOOST IGBT & BOOST DIODE

Figure 17. T1 & T2 FBSOA

Figure 18. T1 & T2 RBSOA
NXH80B120H2Q0

TYPICAL CHARACTERISTICS – IGBT PROTECTION DIODE AND BYPASS DIODE

Figure 19. Diode Forward Characteristic

Figure 20. Diode Transient Thermal Impedance Bypass Diode / IGBT Protection Diode

TYPICAL CHARACTERISTICS – THERMISTOR

Figure 21. Thermistor Characteristic
MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

PIM22, 55x32.5 / Q0BOOST
CASE 180AJ
ISSUE B

DATE 08 NOV 2017

NOTES:
2. CONTROLLING DIMENSION MILLIMETERS
3. DIMENSION B APPLIES TO THE PLATED TERMINALS AND IS MEASURED BETWEEN 1.00 AND 3.00 FROM THE TERMINAL TIP.
4. POSITION OF THE CENTER OF THE TERMINALS IS DETERMINED FROM DATUM B, THE CENTER OF DIMENSION D, X DIRECTION, AND FROM DATUM A, Y DIRECTION. POSITIONAL TOLERANCE, AS NOTED IN DRAWING, APPLIES TO EACH TERMINAL IN BOTH DIRECTIONS.
5. PACKAGE MARKING IS LOCATED AS SHOWN ON THE SIDE OPPOSITE THE PACKAGE ORIENTATION FEATURES.

<table>
<thead>
<tr>
<th>PIN</th>
<th>X Y Position</th>
<th>PIN</th>
<th>X Y Position</th>
<th>PIN</th>
<th>X Y Position</th>
<th>PIN</th>
<th>X Y Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>-8.45 -11.25</td>
<td>6</td>
<td>-5.95 -11.25</td>
<td>7</td>
<td>2.85 -11.25</td>
<td>8</td>
<td>5.35 -11.25</td>
</tr>
<tr>
<td>13</td>
<td>16.75 -16.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MOUNTING HOLE POSITION

NOTE 4

G = Pb−Free Package
AT = Assembly & Test Site Code
YYWW = Year and Work Week Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “/C0071”, may or may not be present. Some products may not follow the Generic Marking.

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

DOCUMENT NUMBER: 98AON63481G
DESCRIPTION: PIM22 55X32.5 / Q0BOOST (SOLDER PIN)

Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

ON Semiconductor and ® are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019 www.onsemi.com