

3-Level NPC Inverter Module

Product Preview

NXH600N105H7F5S2HG, NXH600N105H7F5P2HG

The NXH600N105H7F5S2HG/P2HG is a power module in F5BP package containing an I-type neutral point clamped three-level inverter. The integrated field stop trench IGBTs and FRDs provide lower conduction and switching losses, enabling designers to achieve high efficiency, high power density and superior reliability.

Features

- I-type Neutral Point Clamped Three-level Inverter Module
- 1050 V Field Stop 7 IGBTs
- Low Inductive Layout
- Solder Pins and Press Fit Pins
- Integrated NTC Thermistor
- These Devices are Pb-Free, Halide Free and are RoHS Compliant

Typical Applications

- Energy Storage System
- Solar Inverter
- Uninterruptable Power Supplies Systems

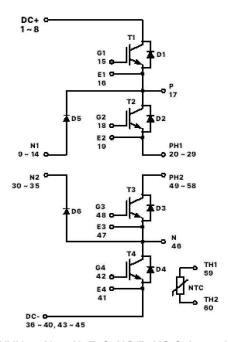
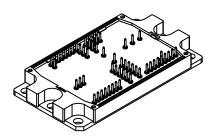
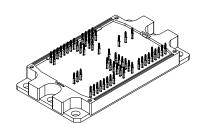
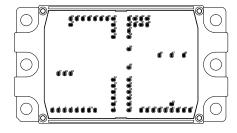




Figure 1. NXH600N105H7F5S2HG/P2HG Schematic Diagram

This document contains information on a product under development. **onsemi** reserves the right to change or discontinue this product without notice.

PIM60 112.00x62.00x12.00 CASE 180CW


PIM60 112.00x62.00x12.00 CASE 180HY

MARKING DIAGRAM

XXXXX = Device Code
G = Pb-Free Package
AT = Assembly & Test Site Code
YYWW = Year and Work Week Code

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

MODULE CHARACTERISTICS

Operating Temperature under Switching Condition	T _{VJOP}	-40 to 150	°C
Storage Temperature Range	T _{stg}	-40 to 125	°C
Isolation Test Voltage, t = 2 s, 50 Hz (Note 1)	V _{is}	4800	V_{RMS}
Stray Inductance	L _{s CE}	15	nH
Terminal Connection Torque (M5, Screw)	M	3 to 5	Nm
Weight	G	245	g
Creepage Distance (Terminal to Heatsink)		17.46	mm
Creepage Distance (Terminal to Terminal)		6.48	mm
Clearance Distance (Terminal to Heatsink)		15.62	mm
Clearance Distance (Terminal to Terminal)		5.05	mm
Comparative Tracking Index	СТІ	>600	

^{1. 4800} VAC_{RMS} for 2 second duration is equivalent to 4000 VAC_{RMS} for 1 minute duration.

MAXIMUM RATINGS (T = 25 °C unless otherwise noted)

MAXIMU	M RATINGS (T _J = 25 °C unless otherwise noted)		
Symbol	Parameter	Value	Unit
OUTER IC	GBT (T1, T4)		
V _{CES}	Collector-Emitter Voltage	1050	٧
V_{GE}	Gate-Emitter Voltage Positive Transient Gate-Emitter Voltage (T _{pulse} = 5 ms, D < 0.10)	±20 30	V
I _C	Continuous Collector Current @ T _c = 80 °C (T _J = 175 °C)	429	А
I _{Cpulse}	Pulsed Peak Collector Current @ Tc = 80 °C (T _J = 175 °C), T _{pulse} = 1 ms	1287	А
P _{tot}	Power Dissipation (T _J = 175 °C, Tc = 80 °C)	1080	W
T _{JMIN}	Minimum Operating Junction Temperature	-40	°C
T_{JMAX}	Maximum Operating Junction Temperature	175	°C
INNER IG	BT (T2, T3)		
V _{CES}	Collector-Emitter Voltage	1050	V
V_{GE}	Gate-Emitter Voltage Positive Transient Gate-Emitter Voltage (T _{pulse} = 5 ms, D < 0.10)	+20 30	V
I _C	Continuous Collector Current @ T _c = 80 °C (T _J = 175 °C)	433	А
I _{Cpulse}	Pulsed Peak Collector Current @ Tc = 80 °C (T _J = 175 °C), T _{pulse} = 1 ms	1299	Α
P _{tot}	Power Dissipation (T _J = 175 °C, Tc = 80 °C)	1080	W
T _{JMIN}	Minimum Operating Junction Temperature	-40	°C
T_{JMAX}	Maximum Operating Junction Temperature	175	°C
SIC NEUT	TRAL POINT DIODE (D5, D6)		
V_{RRM}	Peak Repetitive Reverse Voltage	1050	V
I _F	Continuous Forward Current @ Tc = 80 °C (T _J = 175 °C)	192	А
I _{FRM}	Repetitive Peak Forward Current (T _J = 175 °C), T _{pulse} = 1 ms	576	А
P _{tot}	Maximum Power Dissipation @ Tc = 80 °C (T _J = 175 °C)	419	W
T _{JMIN}	Minimum Operating Junction Temperature	-40	°C
T_{JMAX}	Maximum Operating Junction Temperature	175	°C
INVERSE	DIODES (D1, D2, D3, D4)		
V_{RRM}	Peak Repetitive Reverse Voltage	1050	V
I _F	Continuous Forward Current @ Tc = 80 °C (T _J = 175 °C)	196	А
I _{FRM}	Repetitive Peak Forward Current (T _J = 175 °C), T _{pulse} = 1 ms	588	Α

MAXIMUM RATINGS (T_J = 25 $^{\circ}$ C unless otherwise noted) (continued)

Symbol	Parameter	Value	Unit			
INVERSE DIODES (D1, D2, D3, D4)						
P _{tot}	Maximum Power Dissipation @ Tc = 80 °C (T _J = 175 °C)	434	W			
T _{JMIN}	Minimum Operating Junction Temperature	-40	°C			
T _{JMAX}	Maximum Operating Junction Temperature	175	°C			

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

2. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe

FLECTRICAL CHARACTERISTICS (T. = 25 °C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OUTER IC	BBT (T1, T4)					
I _{CES}	Collector-Emitter Cutoff Current	V _{GE} = 0 V, V _{CE} = 1050 V	-	_	500	μΑ
V _{CE(sat)}	Collector-Emitter Saturation Voltage	V _{GE} = 15 V, I _C = 600 A, T _J = 25 °C	-	1.6	2.3	٧
		V _{GE} = 15 V, I _C = 600 A, T _J = 150 °C	-	2.0	-	
V _{GE(TH)}	Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 600 \text{ mA}$	4.0	5.5	6.9	V
I _{GES}	Gate Leakage Current	V _{GE} = 20 V, V _{CE} = 0 V	-	_	1	μΑ
Rg	Internal Gate Resistor		-	0.58	-	Ω
	Turn-off safe operating area	V_{CC} < 800 V, $R_{G (off)} \ge 30 \Omega$, T_{vj} < 150 °C	-	800	-	Α
t _{d(on)}	Turn-on Delay Time	T _J = 25 °C	-	260	-	ns
t _r	Rise Time	$V_{CE}^{'}=600 \text{ V, } I_{C}=200 \text{ A}$ $V_{GE}=-9 \text{ V to +15 V, } R_{G \text{ (on)}}=9 \Omega,$ $R_{G \text{ (off)}}=18 \Omega$	-	60	-	1
t _{d(off)}	Turn-off Delay Time		-	1264	-	1
t _f	Fall Time		-	15	-	
E _{on}	Turn-on Switching Loss per Pulse		-	6570	-	μJ
E _{off}	Turn-off Switching Loss per Pulse	7	-	9400	-	
t _{d(on)}	Turn-on Delay Time	$ \begin{array}{c} T_J = 125~^{\circ}\text{C} \\ V_{CE} = 600~\text{V},~I_C = 200~\text{A} \\ V_{GE} = -9~\text{V}~\text{to}~+15~\text{V},~R_{G~(on)} = 9~\Omega, \\ R_{G~(off)} = 18~\Omega \\ \end{array} $	-	230	-	ns
t _r	Rise Time		-	63	-	
t _{d(off)}	Turn-off Delay Time		-	1369	-	
t _f	Fall Time		-	9.8	-	
E _{on}	Turn-on Switching Loss per Pulse		-	7130	_	μJ
E _{off}	Turn-off Switching Loss per Pulse		-	11860	-	
C _{ies}	Input Capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 100 kHz	-	48843	-	pF
C _{oes}	Output Capacitance	7	-	1767	-	1
C _{res}	Reverse Transfer Capacitance	7	-	281	-	
Q_g	Total Gate Charge	$V_{CE} = 600 \text{ V}, I_{C} = 57 \text{ A}, V_{GE} = -15/+20 \text{ V}$	-	2988	-	nC
R_{thJH}	Thermal Resistance – Chip-to-heatsink	Thermal grease, Thickness = 2 Mil ±2%,	-	0.139	-	°C/W
R_{thJC}	Thermal Resistance - Chip-to-case	λ = 2.87 W/mK	-	0.088	-	°C/W
SIC NEUT	RAL POINT DIODE (D5, D6)					
V _F	Diode Forward Voltage	I _F = 200 A, T _J = 25 °C	-	1.6	1.75	V
		I _F = 200 A, T _J = 150 °C	-	2.1	-	
t _{rr}	Reverse Recovery Time	T _J = 25 °C	-	20	-	ns
Q _{rr}	Reverse Recovery Charge	$V_{CE} = 600 \text{ V}, I_{C} = 200 \text{ A}$ $V_{GE} = -9 \text{ V to } +15 \text{ V}, R_{G \text{ (on)}} = 9 \Omega$	-	400	-	nC
I _{RRM}	Peak Reverse Recovery Current	GE - 1 - 1 - 1 - 1 , 1 · G (OII) - 5	_	24	-	Α
di/dt	Peak Rate of Fall of Recovery Current	†	_	2.5	-	A/ns
E _{rr}	Reverse Recovery Energy	┪ !	_	117	_	μJ

Operating parameters

${\tt NXH600N105H7F5S2HG},\,{\tt NXH600N105H7F5P2HG}$

ELECTRICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise noted) (continued)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
SIC NEUT	RAL POINT DIODE (D5, D6)					
t _{rr}	Reverse Recovery Time	T _J = 125 °C	-	23	-	ns
Q _{rr}	Reverse Recovery Charge	$V_{CE} = 600 \text{ V}, I_{C} = 200 \text{ A}$ $V_{GE} = -9 \text{ V to } +15 \text{ V}, R_{G \text{ (off)}} = 9 \Omega$	-	500	-	nC
I _{RRM}	Peak Reverse Recovery Current]	-	29	-	Α
di/dt	Peak Rate of Fall of Recovery Current	1	-	2.4	-	A/ns
E _{rr}	Reverse Recovery Energy]	-	150	-	μJ
R _{thJH}	Thermal Resistance - Chip-to-heatsink	Thermal grease, Thickness = 2 Mil ±2%,	-	0.297	-	K/W
R_{thJC}	Thermal Resistance - Chip-to-case	λ = 2.87 W/mK	-	0.227	-	°C/W
INNER IGI	BT (T2, T3)					
I _{CES}	Collector-Emitter Cutoff Current	V _{GE} = 0 V, V _{CE} = 1050 V	-	-2	500	μΑ
V _{CE(sat)}	Collector-Emitter Saturation Voltage	V _{GE} = 15 V, I _C = 600 A, T _J = 25 °C	-	1.6	2.3	V
		V _{GE} = 15 V, I _C = 600 A, T _J = 150 °C	-	2.0	-	1
V _{GE(TH)}	Gate-Emitter Threshold Voltage	V _{GE} = V _{CE} , I _C = 600 mA	4.0	5.5	6.9	V
I _{GES}	Gate Leakage Current	V _{GE} = 20 V, V _{CE} = 0 V	-	-0.02	1	μΑ
R _g	Internal Gate Resistor		-	0.58	-	Ω
	Turn-off Safe Operating Area	V_{CC} < 800V, $R_{G (off)} \ge 35 \Omega$, T_{vj} < 150 $^{\circ}C$	-	800	-	Α
t _{d(on)}	Turn-on Delay Time	$ \begin{array}{c} T_{J} = 25 \ ^{\circ}C \\ V_{CE} = 600 \ V, \ I_{C} = 200 \ A \\ V_{GE} = -9 \ V \ to \ +15 \ V, \ R_{G \ (on)} = 7 \ \Omega, \\ R_{G \ (off)} = 31 \ \Omega \end{array} $	-	233	-	ns
t _r	Rise Time		-	57	-	
t _{d(off)}	Turn-off Delay Time		-	2200	-	
t _f	Fall Time		-	18	-	
E _{on}	Turn-on Switching Loss per Pulse		-	8640	-	μJ
E _{off}	Turn-off Switching Loss per Pulse	1	-	11800	=	
t _{d(on)}	Turn-on Delay Time	T _J = 125 °C	-	210	-	ns
t _r	Rise Time	V_{CE} = 600 V, I_{C} = 200 A V_{GE} = -9 V to +15 V, $R_{G \text{ (on)}}$ = 7 Ω,	-	62	-	
t _{d(off)}	Turn-off Delay Time	$R_{G \text{ (off)}} = 31 \Omega$	-	2350	-	
t _f	Fall Time	1	-	18	-	
E _{on}	Turn-on Switching Loss per Pulse	1	-	12510	-	μJ
E _{off}	Turn-off Switching Loss per Pulse	1	-	14500	-	1
C _{ies}	Input Capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 100 kHz	-	47927	-	pF
C _{oes}	Output Capacitance	1	-	1871	-	1
C _{res}	Reverse Transfer Capacitance	1	-	304	-	1
Qg	Total Gate Charge	$V_{CE} = 600 \text{ V}, I_{C} = 57 \text{ A}, V_{GE} = -15/+20 \text{ V}$	-	2940	-	nC
R _{thJH}	Thermal Resistance - Chip-to-heatsink	Thermal grease, Thickness = 2 Mil ±2%,	-	0.139	-	°C/W
R _{thJC}	Thermal Resistance – Chip-to-case	λ = 2.87 W/mK	-	0.088	-	°C/W
INVERSE	DIODES (D1, D2, D3, D4)					
V _F	Diode Forward Voltage	I _F = 300 A, T _J = 25 °C	-	2.5	3.4	V
		I _F = 300 A, T _J = 150 °C	_	2.3	_	1

ELECTRICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise noted) (continued)

	Parameter	Test Conditions	Min	Тур	Max	Unit
INVERSE	DIODES (D1, D2, D3, D4)					
t _{rr}	Reverse Recovery Time	T _J = 25 °C	-	100	-	ns
Q _{rr}	Reverse Recovery Charge	V_{CE} = 600 V, I_{C} = 200 A V_{GE} = -9 V to +15 V, $R_{G (on)}$ = 7 Ω	-	5580	-	nC
I _{RRM}	Peak Reverse Recovery Current]	-	135	-	Α
di/dt	Peak Rate of Fall of Recovery Current]	-	2.8	-	A/ns
E _{rr}	Reverse Recovery Energy		-	1664	-	μJ
t _{rr}	Reverse Recovery Time	T _J = 125 °C	-	187	-	ns
Q _{rr}	Reverse Recovery Charge	$V_{CE} = 600 \text{ V}, I_{C} = 200 \text{ A}$ $V_{GE} = -9 \text{ V to } +15 \text{ V}, R_{G \text{ (on)}} = 7 \Omega$	-	16903	-	nC
I _{RRM}	Peak Reverse Recovery Current		-	201	-	Α
di/dt	Peak Rate of Fall of Recovery Current		-	2.6	_	A/ns
E _{rr}	Reverse Recovery Energy		-	6485	-	μJ
R_{thJH}	Thermal Resistance – Chip-to-heatsink	Thermal grease, Thickness = 2 Mil ±2%,	-	0.277	-	°C/W
R _{thJC}	Thermal Resistance - Chip-to-case	$\lambda = 2.87 \text{ W/mK}$	-	0.220	_	°C/W
THERMIS	TOR CHARACTERISTICS					
R ₂₅	Nominal Resistance	T = 25 °C	-	5	-	kΩ
R ₁₀₀	Nominal Resistance	T = 100 °C	-	492.2	-	Ω
R/R	Deviation of R25		-1	-	1	%
P_{D}	Power Dissipation		-	5	-	mW
	Power Dissipation Constant		-	1.3	-	mW/K
	B-value	B(25/85), tolerance ±1%	-	3430	-	K

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ORDERING INFORMATION

Orderable Part Number	Marking	Package	Shipping
NXH600N105H7F5S2HG	NXH600N105H7F5S2HG	F5 – PIM60 112x62 (SOLDER PIN) (Pb-Free / Halide Free)	8 Units / Blister Tray
NXH600N105H7F5P2HG	NXH600N105H7F5P2HG	F5 – PIM60 112x62 (PRESS FIT PIN) (Pb-Free / Halide Free)	8 Units / Blister Tray

TYPICAL CHARACTERISTICS - IGBT T1/T4 AND D5/D6 DIODE

1 000

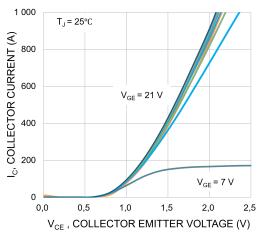
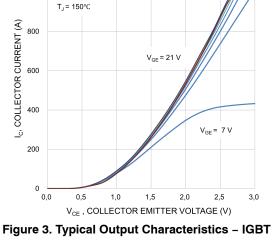



Figure 2. Typical Output Characteristics - IGBT

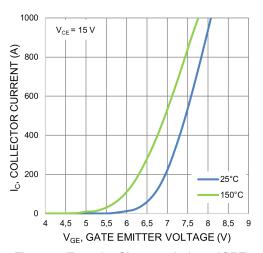


Figure 4. Transfer Characteristics - IGBT

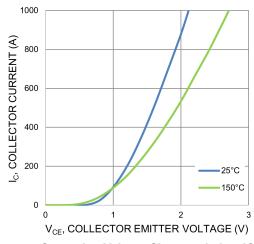


Figure 5. Saturation Voltage Characteristic - IGBT

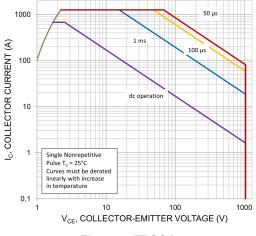


Figure 6. FBSOA

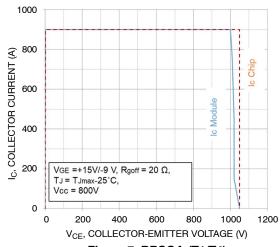


Figure 7. RBSOA (T1/T4)

TYPICAL CHARACTERISTICS - IGBT T1/T4 AND D5/D6 DIODE (CONTINUED)

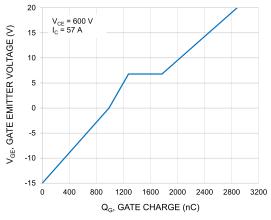


Figure 8. Gate Voltage vs. Gate Charge

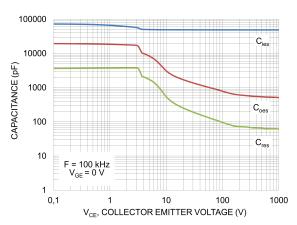


Figure 9. Capacitance

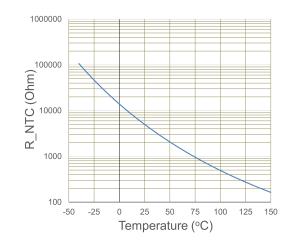


Figure 10. Temperature vs. NTC Value

TYPICAL CHARACTERISTICS - IGBT T2/T3 AND D3/D4, D1/D2 DIODE

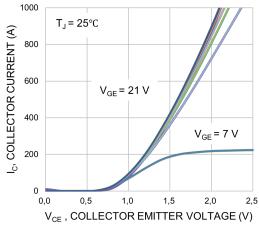


Figure 11. Typical Output Characteristics

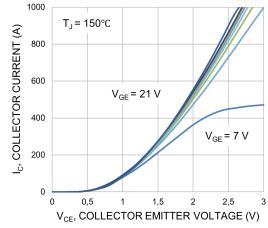


Figure 12. Typical Output Characteristics

TYPICAL CHARACTERISTICS - IGBT T2/T3 AND D3/D4, D1/D2 DIODE (CONTINUED)

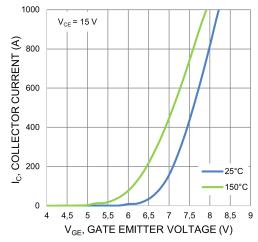


Figure 13. Transfer Characteristics - IGBT

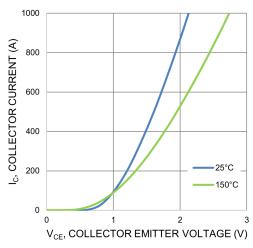


Figure 14. Saturation Voltage Characteristic - IGBT

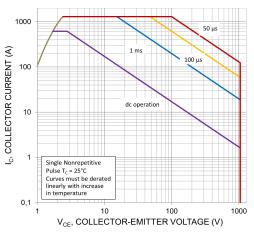


Figure 15. FBSOA

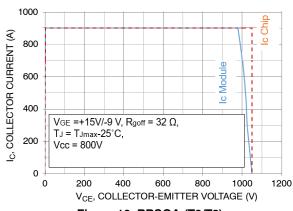


Figure 16. RBSOA (T2/T3)

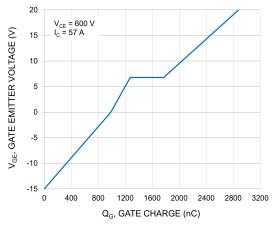


Figure 17. Gate Voltage vs. Gate Charge

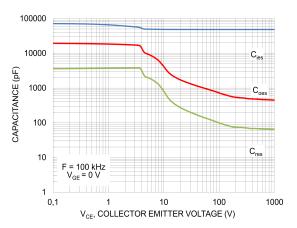


Figure 18. Capacitance vs. V_{CE}

TYPICAL CHARACTERISTICS - IGBT T2/T3 AND D3/D4, D1/D2 DIODE (CONTINUED)

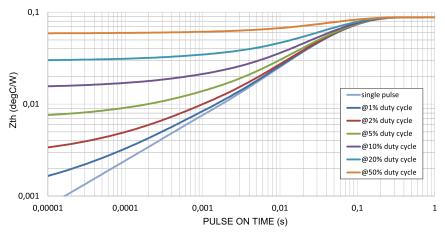


Figure 19. Transient Thermal Impedance (IGBT)

TYPICAL CHARACTERISTIC - D2, D3 (SIC INVERSE DIODE)

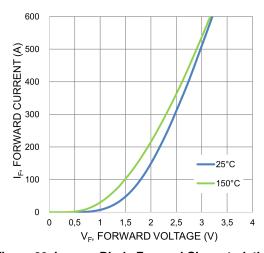


Figure 20. Inverse Diode Forward Characteristics

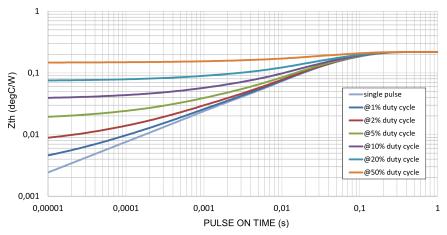


Figure 21. Transient Thermal Impedance (Inverse Diode)

TYPICAL CHARACTERISTIC - D5/D6 (NEUTRAL POINT DIODE)

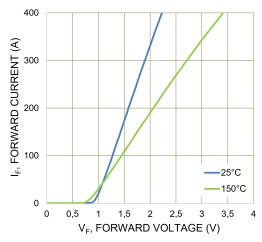


Figure 22. Neutral Diode Forward Characteristics

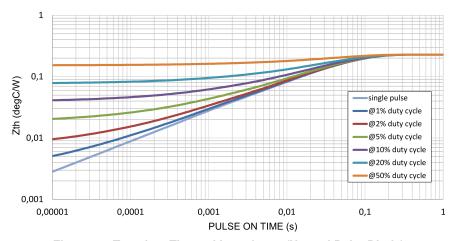


Figure 23. Transient Thermal Impedance (Neutral Point Diode)

TYPICAL CHARACTERISTIC - T1||D5 OR T4||D6

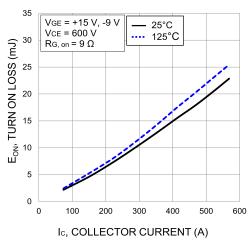


Figure 24. Typical Turn On Loss vs. I_C

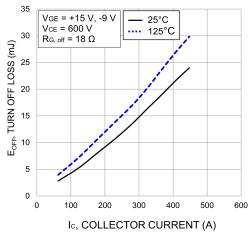


Figure 25. Typical Turn Off Loss vs. I_C

TYPICAL CHARACTERISTIC - T1||D5 OR T4||D6 (CONTINUED)

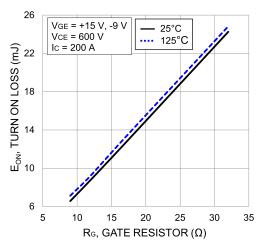


Figure 26. Typical Turn On Loss vs. R_G

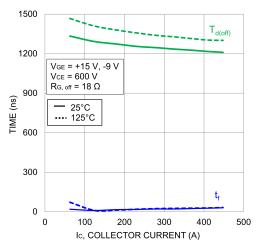


Figure 28. Typical Turn-Off Switching Time vs. I_C

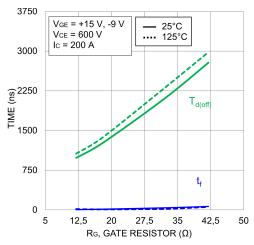


Figure 30. Typical Turn-Off Switching Time vs. R_G

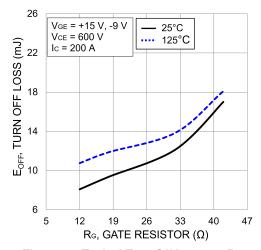


Figure 27. Typical Turn Off Loss vs. R_G

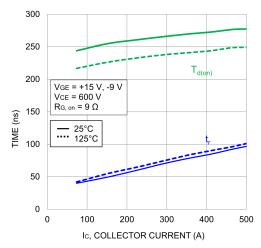


Figure 29. Typical Turn-On Switching Time vs. I_C

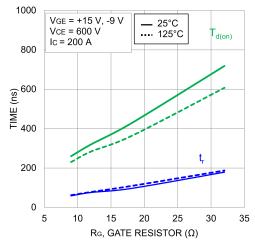


Figure 31. Typical Turn-On Switching Time vs. R_G

TYPICAL CHARACTERISTIC - D5/D6 (NEUTRAL POINT DIODE)

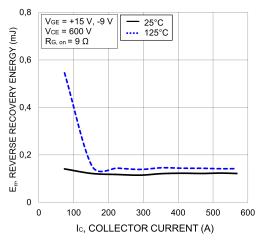


Figure 32. Typical Reverse Recovery Energy Loss vs. I_C

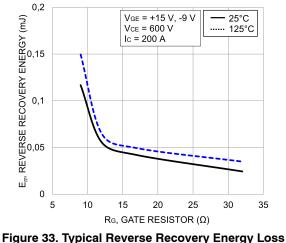


Figure 33. Typical Reverse Recovery Energy Loss vs. R_G

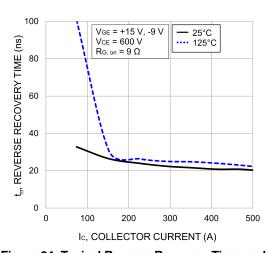


Figure 34. Typical Reverse Recovery Time vs. $I_{\mathbb{C}}$

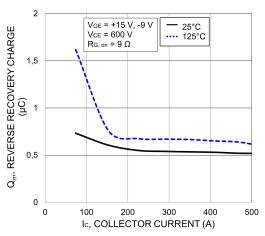


Figure 35. Typical Reverse Recovery Charge vs. I_C

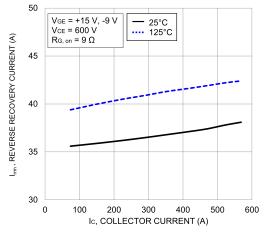


Figure 36. Typical Reverse Recovery Current vs. I_C

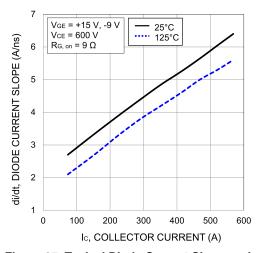


Figure 37. Typical Diode Current Slope vs. I_C

TYPICAL CHARACTERISTIC - D5/D6 (NEUTRAL POINT DIODE) (CONTINUED)

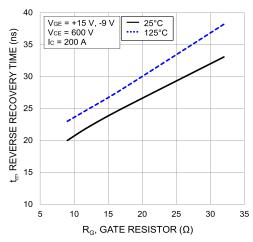


Figure 38. Typical Reverse Recovery Time vs. R_G

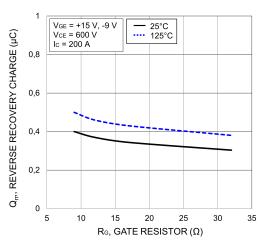


Figure 39. Typical Reverse Recovery Charge vs. R_G

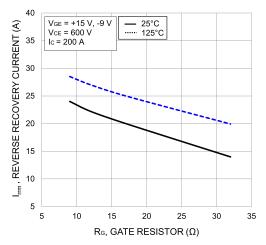


Figure 40. Typical Reverse Recovery Current vs. R_G

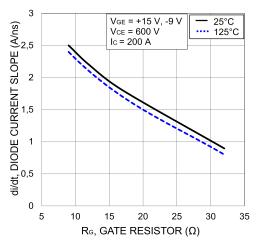


Figure 41. Typical Diode Current Slope vs. R_G

TYPICAL CHARACTERISTIC - T2||D3 + D4 OR T3||D1 + D2

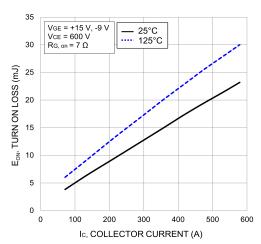


Figure 42. Typical Turn On Loss vs. I_C

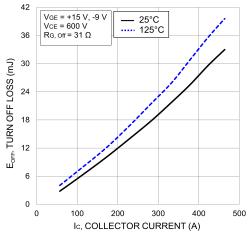


Figure 43. Typical Turn Off Loss vs. I_C

TYPICAL CHARACTERISTIC - T2||D3 + D4 OR T3||D1 + D2 (CONTINUED)

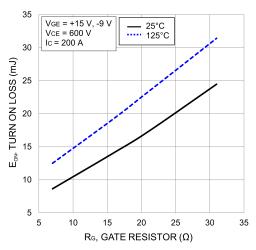


Figure 44. Typical Turn On Loss vs. R_G

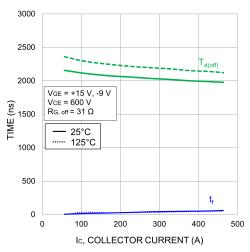


Figure 46. Typical Turn-Off Switching Time vs. I_C

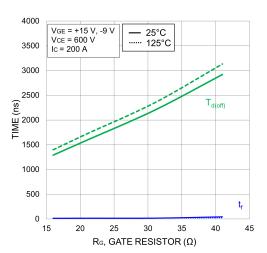


Figure 48. Typical Turn-Off Switching Time vs. R_G

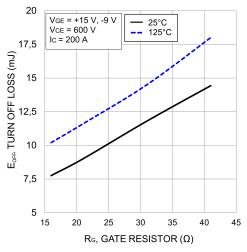


Figure 45. Typical Turn Off Loss vs. R_G

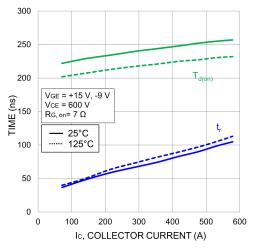


Figure 47. Typical Turn-On Switching Time vs. I_C

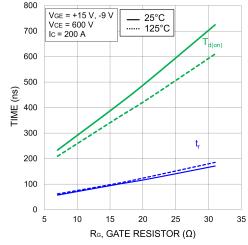


Figure 49. Typical Turn-On Switching Time vs. R_G

TYPICAL CHARACTERISTIC - T2||D3 + D4 OR T3||D1 + D2 (CONTINUED)

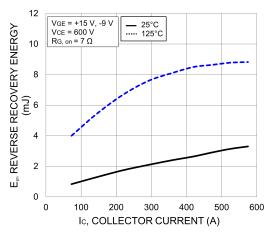


Figure 50. Typical Reverse Recovery Energy Loss vs. I_C

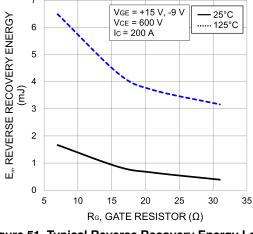


Figure 51. Typical Reverse Recovery Energy Loss vs. R_G

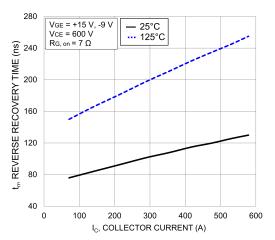


Figure 52. Typical Reverse Recovery Time vs. I_C

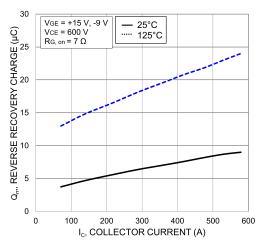


Figure 53. Typical Reverse Recovery Charge vs. I_C

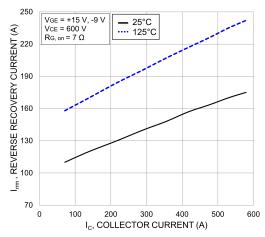


Figure 54. Typical Reverse Recovery Current vs. I_C

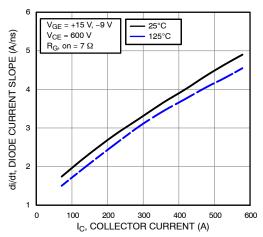


Figure 55. Typical di/dt vs. I_C

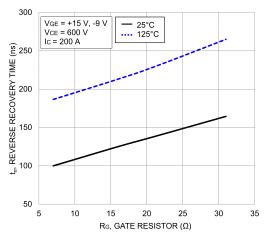


Figure 56. Typical Reverse Recovery Time vs. R_G

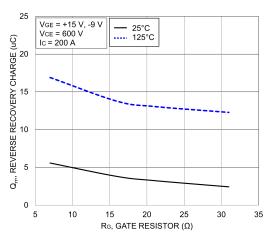


Figure 57. Typical Reverse Recovery Charge vs. R_G

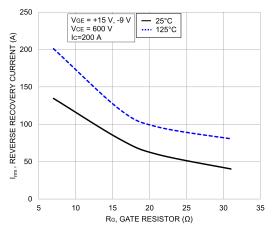


Figure 58. Typical Reverse Recovery Peak Current vs. R_G

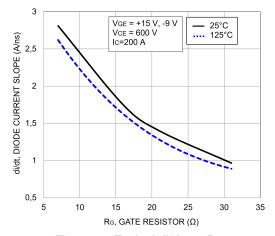
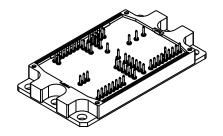


Figure 59. Typical di/dt vs. R_G

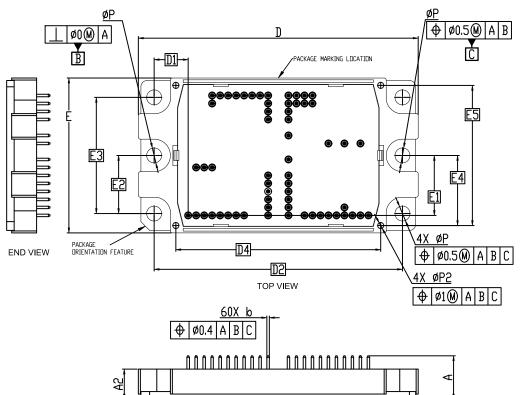

REVISION HISTORY

Revision	Description of Changes	Date
P3	Figure 7. RBSOA (T1/T4) and Figure 16. RBSOA (T2/T3) updated.	6/20/2025
P4	Updated TYP value of RthJH parameter in the Electrical Characteristics Table (SiC NEUTRAL POINT DIODE section) on page 4.	7/1/2025

This document has undergone updates prior to the inclusion of this revision history table. The changes tracked here only reflect updates made on the noted approval dates.

CASE 180CW ISSUE O

DATE 30 JUL 2024


NOTES:

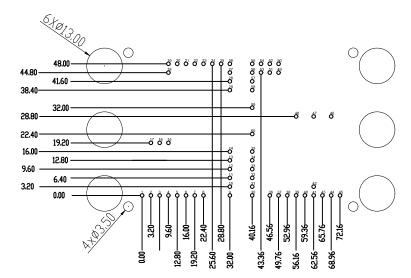
1. Dimensioning and tolerancing conform to ASME Y14.5

□ | 0.3 |

白

- 2. All dimensions are in millimeters.
- 3. Pin-grid is 3.2mm.
- 4. Package marking is located on the side opposite the package orientation feature.
- 5. The pins are gold-plated solder pin.

SIDE VIEW


	MILLIMETERS				
DIM	MIN.	NOM.	MAX.		
Α	17.00	17.00 17.40			
A2	11.70	12.00	12.30		
b	0.95	1.00	1.05		
D	111.60	112.00	112.40		
D1		13.62 BSC			
D2		99.40 BSC			
D4		82.00 BSC			
Е	61.60	62.00	62.40		
E1		24.00 BSC			
E2		23.25 BSC			
E3	46.50 BSC				
E4	28.05 BSC				
E5	56.10 BSC				
Р	5.90	6.00	6.10		
P2	2.20	2.30	2.40		

DOCUMENT NUMBER:	98AON63827H	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	PIM60 112.00x62.00x12.00		PAGE 1 OF 2			

CASE 180CW ISSUE O

DATE 30 JUL 2024

RECOMMENDED MOUNTING PATTERN

* For additional Information on our Pb—Free strategy and soldering details, please download the Onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTE 2:

				Pin POSITI	ION			
Pin	Х	Y	Pin	Х	Υ	Pin	Х	Υ
1	0.00	0.00	24	25.60	48.00	47	62.56	28.80
2	3.20	0.00	25	28.80	48.00	48	56.16	28.80
3	6.40	0.00	26	32.00	48.00	49	49.76	44.80
4	9.60	0.00	27	32.00	44.80	50	49.76	48.00
5	12.80	0.00	28	32.00	41.60	51	46.56	44.80
6	16.00	0.00	29	32.00	38.40	52	46.56	48.00
7	19.20	0.00	30	40.16	0.00	53	43.36	44.80
8	22.40	0.00	31	40.16	3.20	54	43.36	48.00
9	32.00	0.00	32	40.16	6.40	55	40.16	48.00
10	32.00	3.20	33	40.16	9.60	56	40.16	44.80
11	32.00	6.40	34	40.16	12.80	57	40.16	41.60
12	32.00	9.60	35	40.16	16.00	58	40.16	38.40
13	32.00	12.80	36	46.56	0.00	59	40.16	32.00
14	32.00	16.00	37	49.76	0.00	60	40.16	22.40
15	9.60	19.20	38	52.96	0.00			
16	6.40	19.20	39	56.16	0.00			
17	3.20	19.20	40	59.36	0.00			
18	9.60	44.80	41	62.56	0.00			

62.56

65.76

68.96

72.16

68.96

3.20

0.00

0.00

0.00 28.80

GENERIC MARKING DIAGRAM*

	××××××××××××××××××××××××××××××××××××××	
•	FRONTSIDE MARKING	
,	2D CODE	

BACKSIDE MARKING

XXXXX = Specific Device Code

AT = Assembly & Test Site Code

YYWW = Year and Work Week Code mi

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

9.60

12.80

16.00

19.20

22.40

19

20 21

22

23

48.00

48.00

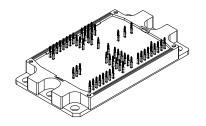
48.00

48.00

48.00

42

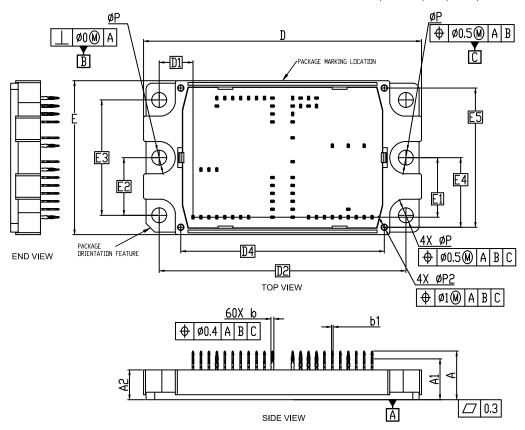
43


44

45

46

DOCUMENT NUMBER:	98AON63827H	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	PIM60 112.00x62.00x12.00		PAGE 2 OF 2		

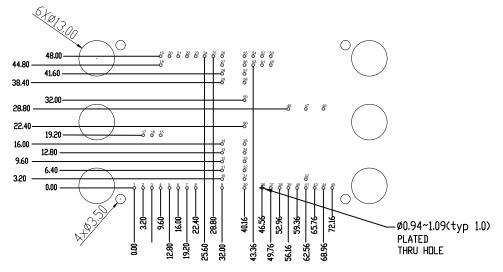


CASE 180HY ISSUE O

DATE 30 JUL 2024

NOTES:

- 1. Dimensioning and tolerancing conform to ASME Y14.5
- 2. All dimensions are in millimeters.
- 3. Dimensions b and b1 apply to the plated terminals and are measured at dimension A1
- 4. Pin-grid is 3.2mm.
- 5. Package marking is located on the side opposite the package orientation feature.
- 6. The pins are Sn plated press fit pin.


	MILLIMETERS			
DIM	MIN.	NOM.	MAX.	
Α	19.20	19.60	20.00	
A1	16.25	16.45	16.65	
A2	11.70	12.00	12.30	
b	1.15	1.20	1.25	
b1	0.59	0.64	0.69	
D	111.60	112.00	112.40	
D1	13.62 BSC			
D2	99.40 BSC			
D4	82.00 BSC			
E	61.60	62.00 62.4		
E1	24.00 BSC			
E2	23.25 BSC			
E3	46.50 BSC			
E4	28.05 BSC			
E5	56.10 BSC			
Р	5.90	6.00 6.10		
P2	2.20	2.30	2.40	
D2 D4 E E1 E2 E3 E4 E5	61.60 5.90	99.40 BSC 82.00 BSC 62.00 24.00 BSC 23.25 BSC 46.50 BSC 28.05 BSC 56.10 BSC	62.40	

DOCUMENT NUMBER:	98AON63926H	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PIM60 112.00x62.00x12.00		PAGE 1 OF 2	

CASE 180HY ISSUE O

DATE 30 JUL 2024

RECOMMENDED MOUNTING PATTERN

* For additional Information on our Pb—Free strategy and soldering details, please download the Onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTE 2:

NOTE 2.								
	Pin POSITION							
Pin	×	Y	Pin	×	Υ	Pin	Х	Υ
1	0.00	0.00	24	25.60	48.00	47	62.56	28.80
2	3.20	0.00	25	28.80	48.00	48	56.16	28.80
3	6.40	0.00	26	32.00	48.00	49	49.76	44.80
4	9.60	0.00	27	32.00	44.80	50	49.76	48.00
5	12.80	0.00	28	32.00	41.60	51	46.56	44.80
6	16.00	0.00	29	32.00	38.40	52	46.56	48.00
7	19.20	0.00	30	40.16	0.00	53	43.36	44.80
8	22.40	0.00	31	40.16	3.20	54	43.36	48.00
9	32.00	0.00	32	40.16	6.40	55	40.16	48.00
10	32.00	3.20	33	40.16	9.60	56	40.16	44.80
11	32.00	6.40	34	40.16	12.80	57	40.16	41.60
12	32.00	9.60	35	40.16	16.00	58	40.16	38.40
13	32.00	12.80	36	46.56	0.00	59	40.16	32.00
14	32.00	16.00	37	49.76	0.00	60	40.16	22.40
15	9.60	19.20	38	52.96	0.00			
16	6.40	19.20	39	56.16	0.00			
17	3.20	19.20	40	59.36	0.00			

62.56

62.56

65.76

68.96

72.16

68.96

0.00

3.20

0.00

0.00

0.00

28.80

GENERIC MARKING DIAGRAM*

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
FRONTSIDE MARKIN	G
2D CODE	

BACKSIDE MARKING

XXXXX = Specific Device Code
AT = Assembly & Test Site Code
YYWW = Year and Work Week Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

18

19

20

21

22

23

9.60

9.60

12.80

16.00

19.20

22.40

44.80

48.00

48.00

48.00

48.00

48.00

41

42

43

44

45

DOCUMENT NUMBER:	98AON63926H	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	PIM60 112.00x62.00x12.00		PAGE 2 OF 2		

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales