TMPIM 35 A CIB/CI Module

Product Preview

NXH35C120L2C2SG/S1G

The NXH35C120L2C2SG is a transfer-molded power module containing a converter-inverter-brake circuit consisting of six 35 A, 1600 V rectifiers, six 35 A, 1200 V IGBTs with inverse diodes, one 35 A, 1200 V brake IGBT with brake diode and an NTC thermistor.

The NXH35C120L2C2S1G is a transfer-molded power module containing a converter-inverter circuit consisting of six 35 A, 1600 V rectifiers, six 35 A, 1200 V IGBTs with inverse diodes, and an NTC thermistor.

Features

- Low Thermal Resistance
- 6 mm Clearance Distance from Pin to Heatsink
- Compact 73 mm × 40 mm × 8 mm Package
- Solderable Pins
- Thermistor
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Industrial Motor Drives
- Servo Drives

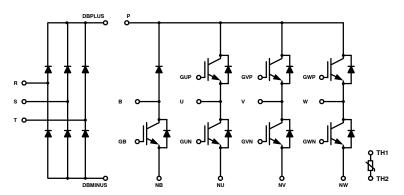


Figure 1. NXH35C120L2C2SG Schematic Diagram

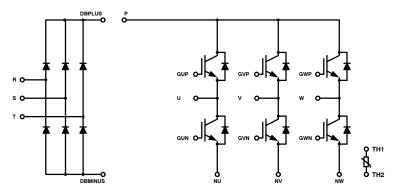
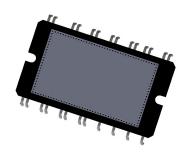
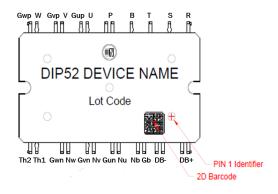



Figure 2. NXH35C120L2C2S1G Schematic Diagram


ON Semiconductor®

www.onsemi.com

TMPIM DIP52 CASE 181AD

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping
NXH35C120L2C2SG	TMPIM DIP52 (Pb-Free)	6 Units / Tube
NXH35C120L2C2S1G	TMPIM DIP52 (Pb-Free)	6 Units / Tube

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
IGBT	•	•	
Collector-Emitter Voltage	V _{CES}	1200	V
Gate-Emitter Voltage	V_{GE}	±20	V
Continuous Collector Current @ T _c = 80°C (T _{VJmax} = 175°C)	I _C	35	Α
Pulsed Collector Current	I _{Cpulse}	105	Α
DIODE			
Peak Repetitive Reverse Voltage	V_{RRM}	1200	V
Continuous Forward Current @ T _c = 80°C (T _{VJmax} = 175°C)	I _F	35	Α
Repetitive Peak Forward Current (T _J = 175°C)	I _{FRM}	105	Α
l ² t Value (60 Hz single half-sine wave)	l ² t	46	A ² t
RECTIFIER DIODE			
Peak Repetitive Reverse Voltage	V_{RRM}	1600	V
Continuous Forward Current @ T _c = 80°C (T _{VJmax} = 150°C)	I _F	35	Α
Repetitive Peak Forward Current (T _J = 150°C)	I _{FRM}	105	Α
l ² t Value (60 Hz single half-sine wave) @ 25°C (60 Hz single half-sine wave) @ 150°C	l ² t	1126 510	A ² t
Surge Current (10 ms sin180°) @ 25°C	I _{FSM}	520	Α
THERMAL PROPERTIES			
Storage Temperature Range	T _{stg}	-40 to +125	°C
INSULATION PROPERTIES			
Isolation Test Voltage, t = 1 s, 50 Hz	V _{is}	3000	V _{RMS}
Internal Isolation		Al2O3	
Creepage Distance		6.0	mm
Clearance Distance		6.0	mm
Comperative Tracking Index	CTI	> 400	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
IGBT CHARACTERISTICS						
Collector-Emitter Cutoff Current	V _{GE} = 0 V, V _{CE} = 1200 V	I _{CES}	-	-	250	μΑ
ollector-Emitter Saturation Voltage	V _{GE} = 15 V, I _C = 35 A, T _J = 25°C	V _{CE(sat)}	-	1.8	2.4	V
	V _{GE} = 15 V, I _C = 35 A, T _J = 150°C		_	1.9	_	
Gate-Emitter Threshold Voltage	V _{GE} = V _{CE} , I _C = 4.25 mA	V _{GE(TH)}	4.8	6	6.8	V
Gate Leakage Current	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	-	-	400	nA
Turn-on Delay Time	T _J = 25°C	t _{d(on)}	_	104	_	ns
Rise Time	$V_{CE} = 600 \text{ V}, I_{C} = 35 \text{ A}$ $V_{GF} = \pm 15 \text{ V}, R_{G} = 15 \Omega$	t _r	_	64	_	
Turn-off Delay Time	a ac	t _{d(off)}	_	277	_	1 !
Fall Time	7	t _f	_	53	_	
Turn-on Switching Loss per Pulse	7	E _{on}	_	2900	_	μJ
Turn-off Switching Loss per Pulse	1	E _{off}	_	1200	_	
Turn-on Delay Time	T _J = 150°C	t _{d(on)}	_	168	_	ns
Rise Time	$V_{CE} = 600 \text{ V}, I_{C} = 35 \text{ A}$ $V_{GE} = \pm 15 \text{ V}, R_{G} = 15 \Omega$	t _r	=	72	=	
Turn-off Delay Time	- vae = 10 1, 11a 10 11	t _{d(off)}	_	320	=]
Fall Time	1	t _f	=	165	=	
Turn-on Switching Loss per Pulse	1	E _{on}	=	4030	_	μJ
Turn-off Switching Loss per Pulse	1	E _{off}	=	2200	_	
Input Capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 100 kHz	C _{ies}	_	8333	_	pF
Output Capacitance		C _{oes}	-	298	_	-
Reverse Transfer Capacitance	1	C _{res}	=	175	=	
Total Gate Charge	V _{CE} = 600 V, I _C = 35 A, V _{GE} = 0 V ~ +15 V	Qg	-	360	-	nC
Temperature under Switching Conditions		Tvj op	-40	-	150	°C
Thermal Resistance - Chip-to-Case		R_{thJC}	_	0.57	-	°C/W
Thermal Resistance – Chip-to-Heatsink	Thermal grease, Thickness \approx 3 mil, λ = 2.8 W/mK	R _{thJH}	_	0.97	-	°C/W
DIODE CHARACTERISTICS	•	•	•	•		•
Brake Diode Reverse Leakage Current	V _R = 1200 V	I _R	_	_	200	μΑ
Diode Forward Voltage	I _F = 35 A, T _J = 25°C	V _F	_	2.2	2.7	V
	I _F = 35 A, T _J = 150°C		_	2	_	1
Reverse Recovery Time	$T_J = 25^{\circ}C$ $V_{CE} = 600$ V, $I_C = 35$ A $V_{GE} = \pm 15$ V, $R_G = 15$ Ω	t _{rr}	_	224	_	ns
Reverse Recovery Charge		Q _{rr}	_	1.51	_	μС
Peak Reverse Recovery Current		I _{RRM}	_	18	_	Α
Reverse Recovery Energy		E _{rr}	_	410	_	μJ
Reverse Recovery Time	T_J = 150°C V_{CE} = 600 V, I_C = 35 A V_{GE} = ±15 V, R_G = 15 Ω	t _{rr}	_	532	_	ns
Reverse Recovery Charge		Q _{rr}	_	5.36	_	μС
Peak Reverse Recovery Current		I _{RRM}	_	30	_	Α
Reverse Recovery Energy		E _{rr}	_	1983	_	μJ
Temperature under Switching Conditions		Tvj op	-40	-	150	°C
Thermal Resistance - Chip-to-Case		R _{thJC}	_	0.94	_	°C/W
Thermal Resistance – Chip-to-Heatsink	Thermal grease, Thickness \approx 3 mil, λ = 2.8 W/mK	R _{thJH}	-	1.5	-	°C/W

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified) (continued)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
RECTIFIER DIODE CHARACTERISTI	CS			•		•
Rectifier Reverse Leakage Current	V _R = 1600 V	I _R	_	_	200	μΑ
Rectifier Forward Voltage	I _F = 35 A, T _J = 25°C	V _F	-	1.1	1.5	V
	I _F = 35 A, T _J = 150°C	1	-	1	_	
Temperature under Switching Conditions		Tvj op	-4 0	-	150	°C
Thermal Resistance - Chip-to-Case		R _{thJC}	-	0.55	_	°C/W
Thermal Resistance – Chip-to-Heatsink	Thermal grease, Thickness \approx 3 mil, λ = 2.8 W/mK	R _{thJH}	-	1.28	-	°C/W
THERMISTOR CHARACTERISTICS		•		•	•	-
Nominal Resistance	T = 25°C	R ₂₅	_	5	_	kΩ
Nominal Resistance	T = 100°C	R ₁₀₀	-	493.3	_	Ω
Deviation of R25		ΔR/R	-5	_	5	%
Power Dissipation		P_{D}	_	20	_	mW
Power Dissipation Constant			_	1.4	_	mW/K
B-value	B(25/50), tolerance ±2%		_	3375	_	К
B-value	B(25/100), tolerance ±2%		-	3433	_	K

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS - INVERTER/BRAKE IGBT & DIODE

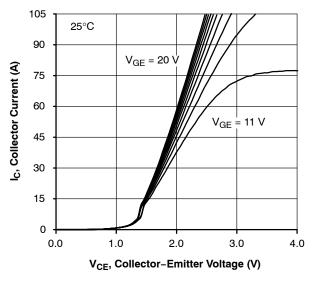


Figure 3. IGBT Typical Output Characteristic

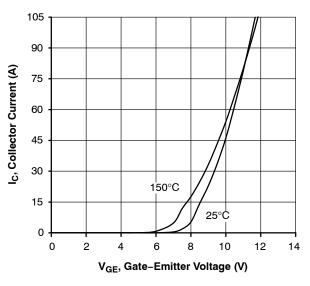


Figure 5. IGBT Typical Transfer Characteristic

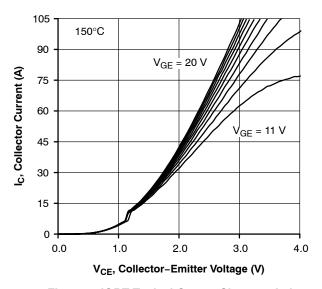


Figure 4. IGBT Typical Output Characteristic

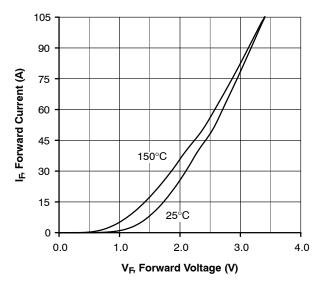


Figure 6. Diode Typical Forward Characteristic

TYPICAL CHARACTERISTICS - INVERTER/BRAKE IGBT & DIODE (Continued)

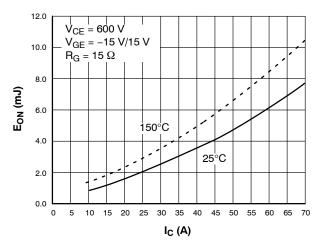


Figure 7. Typical Turn On Loss vs I_C

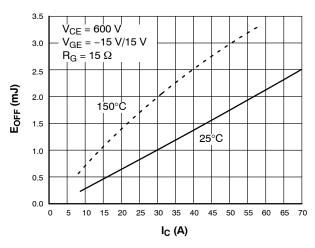


Figure 8. Typical Turn Off Loss vs I_C

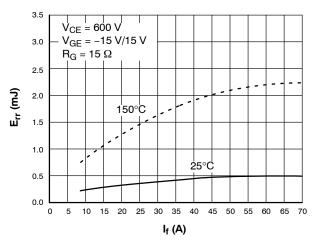


Figure 9. Typical Reverse Recovery Energy vs I_C

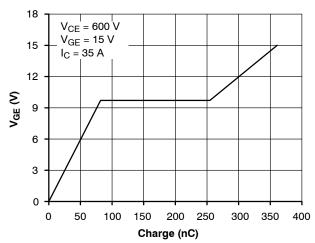


Figure 10. Gate Voltage vs. Gate Charge

TYPICAL CHARACTERISTICS - INVERTER/BRAKE IGBT & DIODE (Continued)

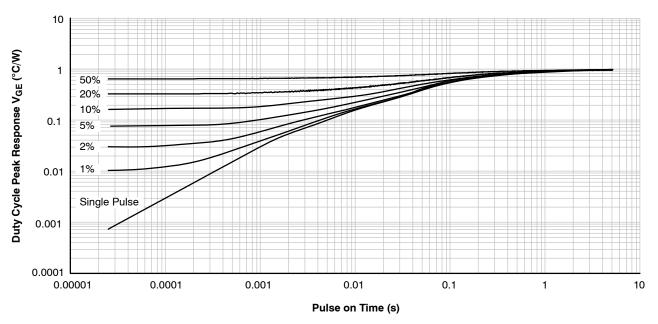


Figure 11. IGBT Junction-to-Heatsink Transient Thermal Impedance

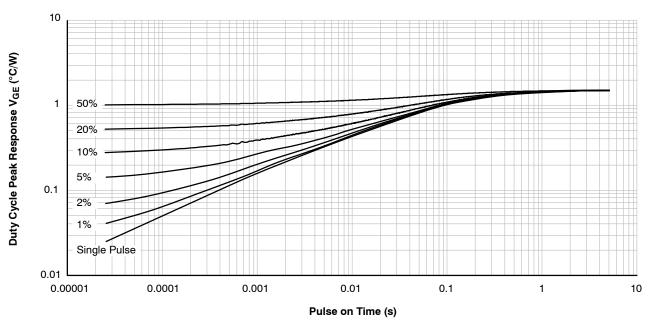


Figure 12. Diode Junction-to-Heatsink Transient Thermal Impedance

TYPICAL CHARACTERISTICS - RECTIFIER

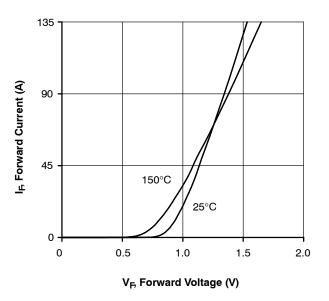


Figure 13. Rectifier Typical Forward Characteristic

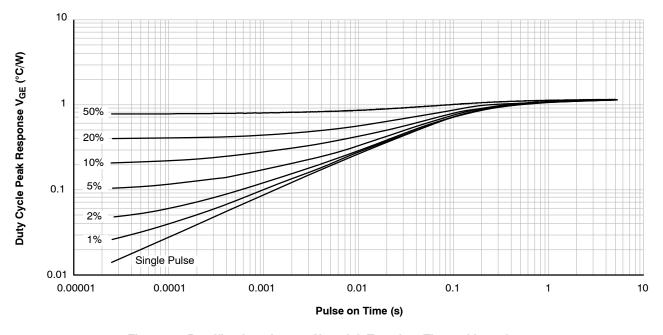


Figure 14. Rectifier Junction-to-Heatsink Transient Thermal Impedance

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales