Q1PACK Module

This high-density, integrated power module combines high-performance IGBTs with rugged anti-parallel diodes.

Features

- Extremely Efficient Trench with Fieldstop Technology
- Low Switching Loss Reduces System Power Dissipation
- Module Design Offers High Power Density
- Low Inductive Layout
- Q1PACK Package with Press-Fit and Solder Pins

Typical Applications

- Solar Inverters
- Uninterruptable Power Supplies

ON Semiconductor®

www.onsemi.com

CASE 180AD PRESS FIT

х

Q1PACK CASE 180AQ SOLDER PINS

DEVICE MARKING

G = Pb-Free Package

AT = Assembly & Test Site Code YYWW = Year and Work Week Code

PIN ASSIGNMENTS

ORDERING INFORMATION

See detailed ordering and shipping information on page 14 of this data sheet.

Table 1. ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
HALFBRIDGE IGBT INVERSE DIODE (D1, D4)			
Peak Repetitive Reverse Voltage	V _{RRM}	1200	V
Forward Current, DC @ T _h = 80°C	١ _F	20	А
Repetitive Peak Forward Current T _{pulse} limited by T _{jmax}	I _{FRM}	80	A
$\begin{array}{l} \mbox{Power Dissipation per Diode} \\ \mbox{T}_{j} = \mbox{T}_{jmax} & \mbox{T}_{h} = 80^{\circ}\mbox{C} \end{array}$	P _{tot}	51	W
Maximum Junction Temperature	TJ	150	°C
HALFBRIDGE IGBT (T1, T4)			-
Collector-emitter voltage	V _{CES}	1200	V
Collector current @ T _h = 80°C	Ι _C	140	А
Pulsed Collector Current, T _{pulse} Limited by T _{jmax}	I _{CM}	480	А
$\begin{array}{l} \mbox{Power Dissipation per IGBT} \\ \mbox{T}_{j} = \mbox{T}_{jmax} & \mbox{T}_{h} = 80^{\circ}\mbox{C} \end{array}$	P _{tot}	280	W
Gate-emitter voltage	V _{GE}	±20	V
Short Circuit Withstand Time V_{GE} = 15 V, V_{CE} = 600 V, T_J \leq 150°C	T _{SC}	10	μs
Maximum Junction Temperature	TJ	150	°C
NP DIODE (D6, D7)			-
Peak Repetitive Reverse Voltage	V _{RRM}	650	V
Forward Current, DC @ T _h = 80°C	l _F	58	А
Repetitive Peak Forward Current, T _{pulse} limited by T _{Jmax}	I _{FRM}	200	А
$\begin{array}{l} \text{Power Dissipation Per Diode} \\ T_j = T_{jmax} & T_h = 80^{\circ}\text{C} \end{array}$	P _{tot}	89	W
Maximum Junction Temperature	TJ	150	°C
NP IGBT (T2, T3)			
Collector-emitter voltage	V _{CES}	650	V
Collector current @ $T_h = 80^{\circ}C$	Ι _C	83	А
Pulsed collector current, T_{pulse} limited by T_{Jmax}	I _{CM}	235	А
$\begin{array}{l} \text{Power Dissipation Per IGBT} \\ T_{j} = T_{jmax} & T_{h} = 80^{\circ}\text{C} \end{array}$	P _{tot}	117	W
Gate-emitter voltage	V _{GE}	±20	V
Short Circuit Withstand Time V_{GE} = 15 V, V_{CE} = 400 V, T_J \leq 150°C	T _{sc}	5	μs
Maximum Junction Temperature	TJ	150	٥°
NP INVERSE DIODE (D2, D3)			
Peak Repetitive Reverse Voltage	V _{RRM}	650	V
Forward Current, DC @ T _h = 80°C	١ _F	17	А
Repetitive Peak Forward Current, T_{pulse} limited by T_{Jmax}	I _{FRM}	68	А
Power Dissipation Per Diode $T_j = T_{jmax}$ $T_h = 80^{\circ}C$	P _{tot}	28	W
Maximum Junction Temperature	TJ	150	°C
HALFBRIDGE DIODE (D5, D8)			
Peak Repetitive Reverse Voltage	V _{RRM}	1200	V
Forward Current, DC @ T _h = 80°C (per diode)	l _F	45	А
Repetitive Peak Forward Current, T _{pulse} limited by T _{Jmax}	I _{FRM}	180	А
Power Dissipation Per Diode $T_j = T_{jmax}$ $T_h = 80^{\circ}C$	P _{tot}	78	W

Table 1. ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
HALFBRIDGE DIODE (D5, D8)			
Junction Temperature	Т _Ј	150	°C
THERMAL PROPERTIES			
Operating Temperature under switching condition	T _{VJ OP}	–40 to (T _{jmax} –25)	°C
Storage Temperature range	T _{stg}	-40 to 125	°C
INSULATION PROPERTIES			
Isolation test voltage, t = 1 sec, 60 Hz/50 Hz	V _{is}	3000	V _{RMS}
Creepage distance		12.7	mm
Clearance		8.06	mm

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 2. ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
HALFBRIDGE IGBT INVERSE DIODE (D1	, D4) CHARACTERISTICS					
Forward voltage	I_F = 7 A, T_j = 25°C I_F = 7 A, T_j = 125°C	V _F	-	1.46 1.49	2.7	V
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness = 2 Mil \pm 2%, λ = 1 W/mK	R _{thJH}		1.864		°C/W
HALFBRIDGE IGBT (T1, T4) CHARACTE	RISTICS					
Collector-emitter saturation voltage	V_{GE} = 15 V, I _C = 160 A, T _j = 25°C V _{GE} = 15 V, I _C = 160 A, T _j = 125°C	V _{CE(sat)}	-	2.06 2.10	2.50 _	V
Gate-emitter threshold voltage	$V_{GE} = V_{CE}, I_C = 6 \text{ mA}$	V _{GE(TH)}	5.0	5.80	6.50	V
Collector-emitter cutoff current	V_{GE} = 0 V, V_{CE} = 1200 V	I _{CES}	_	-	800	μΑ
Gate leakage current	V_{GE} = 20 V, V_{CE} = 0 V	I _{GES}	_	-	800	nA
Turn–on delay time	T _j = 125°C	t _{d(on)}	_	55	-	ns
Rise time	$V_{CE} = 350 \text{ V}, \text{ I}_{C} = 100 \text{ A}$	t _r	-	50	-	
Turn-off delay time	V_{GE} = ±15 V, R_{G} = 4 Ω	t _{d(off)}		430	_	
Fall time		t _f	1	105	_	
Turn on switching loss		Eon		2.73	_	mJ
Turn off switching loss		E _{off}	1	3.58	-	
Input capacitance	V_{CE} =25 V. V_{GE} = 0 V. f = 10 kHz	C _{ies}	-	38164	-	pF
Output capacitance		C _{oes}	_	644	-	
Reverse transfer capacitance		C _{res}	-	784	-	
Gate charge total	V_{CE} = 600 V, I_{C} = 160 A, V_{GE} = 15 V	Qg	_	1664	-	nC
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness = 2 Mil \pm 2%, λ = 1 W/mK	R _{thJH}		0.337		°C/W
NP DIODE (D6, D7) CHARACTERISTICS						•
Forward voltage	V_{GE} = 0 V, I _F = 150 A, T _j = 25°C V _{GE} = 0 V, I _F = 150 A, T _j = 125°C	V _F	-	2.15 2.36	2.60	V
Reverse leakage current	V_{CE} = 650 V, V_{GE} = 0 V	lr	1	-	200	μΑ
Reverse recovery time	T _j = 125°C	trr		225	_	ns
Reverse recovery charge	$V_{CE} = 350 \text{ V}, \text{ I}_{C} = 100 \text{ A}$	Qrr	1	6.15	-	μC
Peak reverse recovery current	V_{GE} = ±15 V, R_{G} = 4 Ω	Irrm	_	85	-	А
Peak rate of fall of recovery current		di/dtmax	-	1315	_	A/μs
Reverse recovery energy		Err	-	1.336	_	mJ
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness = 2 Mil \pm 2%, λ = 1 W/mK	RthJH	_	1.07		°C/W

Table 2. ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
NP IGBT (T2, T3)						
Collector-emitter saturation voltage	V_{CE} = 15 V, I _C = 150 A, T _j = 25°C V _{CE} = 15 V, I _C = 150 A, T _j = 125°C	V _{CE(sat)}	_	1.65 1.84	2.0	V
Gate-emitter threshold voltage	$V_{GE} = V_{CE}$, $I_C = 8 \text{ mA}$	V _{GE(TH)}	5.0	6.10	6.90	V
Collector-emitter cutoff current	V_{GE} = 0 V, V_{CE} = 650 V	I _{CES}		_	400	μA
Gate leakage current	V_{GE} = 20 V, V_{CE} = 0 V	I _{GES}	ĺ	_	800	nA
Turn-on delay time	T _j = 125°C	t _{d(on)}	-	46	_	ns
Rise time	$V_{CE} = 350 \text{ V}, \text{ I}_{C} = 100 \text{ A}$	t _r	ĺ	48	_	
Turn–off delay time	V_{GE} = ±15 V, R_{G} = 4 Ω	t _{d(off)}	ĺ	250	_	
Fall time		t _f		105	-	
Turn on switching loss		E _{on}		1.245	_	mJ
Turn off switching loss		E _{off}	_	2.525	_	
Input capacitance	V _{CE} = 25 V, V _{GE} = 0 V, f = 10 kHz	C _{ies}	_	19380	_	pF
Output capacitance		C _{oes}	_	570	_	
Reverse transfer capacitance		C _{res}	_	496	_	
Gate charge total	V_{CE} = 480 V, I _C = 150 A, V _{GE} = 15 V	Qg	_	790	_	nC
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness = 2 Mil \pm 2%, λ = 1 W/mK	R _{thJH}	_	0.81	_	°C/W
NP INVERSE DIODE (D2, D3)						
Forward voltage	V_{GE} = 0 V, I _F = 15 A, T _j = 25°C V _{GE} = 0 V, I _F = 15 A, T _j = 125°C	V _F	_	1.60 1.59	2.20	V
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness = 2 Mil \pm 2%, λ = 1 W/mK	R _{thJH}		3.43		°C/W
HALFBRIDGE DIODE (D5, D8)						
Forward voltage	V _{GE} = 0 V, I _F = 150 A, T _j = 25°C V _{GE} = 0 V, I _F = 150 A, T _j = 125°C	V _F	-	2.50 2.80	3.50 _	V
Reverse leakage current	V _{CE} = 1200 V, V _{GE} = 0 V	lr	_	-	200	μΑ
Reverse recovery time	T _j = 125°C	trr	_	405	_	ns
Reverse recovery charge	$V_{CE} = 350 \text{ V}, \text{ I}_{C} = 100 \text{ A}$	Qrr	_	15.5	_	μC
Peak reverse recovery current	V_{GE} = ±15 V, R_{G} = 4 Ω	Irrm	_	220	_	А
Peak rate of fall of recovery current		di/dtmax	_	5440	_	A/μs
Reverse recovery energy		Err	_	5.225	_	mJ
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness = 2 Mil \pm 2%, λ = 1 W/mK	RthJH	_	1.213	-	°C/W
THERMISTOR CHARACTERISTICS				•		•
Nominal resistance		R ₂₅	-	22	-	kΩ
Nominal resistance	T = 100°C	R ₁₀₀	-	1486	-	Ω
Deviation of R25		DR/R	-5	-	5	%
Power dissipation		PD	_	200	-	mW
Power dissipation constant			_	2	-	mW/K
B-value	B(25/50), tol ±3%		-	3950	-	К
B-value	B(25/100), tol ±3%		_	3998	_	К

Figure 19. Transient Thermal Impedance (Half Bridge IGBT)

Figure 20. Transient Thermal Impedance (Neutral Point Forward Diode)

Figure 41. Transient Thermal Impedance (Neutral Point IGBT)

Figure 42. Transient Thermal Impedance (Half Bridge Forward Diode)

TYPICAL CHARACTERISTICS – HALF BRIDGE INVERSE DIODE

Figure 45. Transient Thermal Impedance

Figure 46. Diode Forward Characteristics

TYPICAL CHARACTERISTICS – NEUTRAL POINT INVERSE DIODE

TYPICAL CHARACTERISTICS – THERMISTOR

ORDERING INFORMATION

Orderable Part Number	Package	Shipping
NXH160T120L2Q1PG (Press Fit)	Q1PACK – Case 180AD (Pb-Free and Halide-Free)	21 Units / Blister Tray
NXH160T120L2Q1SG (Solder Pin)	Q1PACK – Case 180AQ (Pb-Free and Halide-Free)	21 Units / Blister Tray

MOUNTING HOLE POSITION

¥

7.800

1.60

4.10

6.60

9.10 -14.50

13.60

13.60

23.80

26.50

23.80

26.50

24.00

26.50

24.00

26.50

х

-7.800

1.60

4.10

6.60

9.10

13.60

13.60

23.80

26.50

23.80

26 50

24.00

26.50

24.00

26.50 -8.30

PIN POSITION

Y

14.50

-14.50

-14.50

-14.50

-4.40

-1.45

-1.80

-2.05

0.70

0.95

5.30

5.30

8.30

8.30

Y

14.50

14.50

14.50

14.50

14.50

4.40

1.45

1.80

2.05

-0.70

-0.95

-5.30

-5.30

-8.30

PIN

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

PIN

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

PAGE 1 OF 1

ON Semiconductor and unarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ÓN Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>