

Silicon Carbide (SiC) Module - 30 mohm, 1200 V, SiC M3S MOSFET, 6-PACK, F1 Package

Product Preview

NXH030S120M3F1PTG

The NXH030S120M3F1PTHG is a power module containing 30 m Ω / 1200 V SiC MOSFET 6–PACK and a thermistor with Al2O3 DBC in an F1 package.

Features

- 30 mΩ / 1200 V M3S SiC MOSFET 6PACK
- Al2O3 DBC
- Thermistor
- Options with Pre-Applied Thermal Interface Material (TIM) and without Pre-Applied TIM
- Press-fit Pins
- These Devices are Pb Free, Halide Free and are RoHS Compliant

Typical Applications

- Solar Inverter
- Energy Storage System

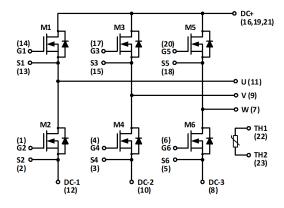
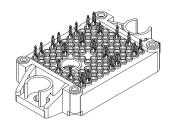
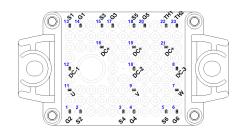



Figure 1. NXH030S120M3F1PTG Schematic Diagram


PIM22, 33.8 x 42.5 (PRESS FIT) CASE 180BX

MARKING DIAGRAM

NXH030S120M3F1PTG = Specific Device Code
AT = Assembly & Test Site Code
YYWW = Year and Work Week Code

PIN CONNECTIONS

See Pin Function Description for Pin Names

ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.

This document contains information on a product under development. **onsemi** reserves the right to change or discontinue this product without notice.

PIN DESCRIPTION

Pin No.	Symbol	Description
1	G2	M2 Gate (Low side switch)
2	S2	M2 Kelvin Source (Low side switch)
3	S4	M4 Kelvin Source (Low side switch)
4	G4	M4 Gate (Low side switch)
5	S6	M6 Kelvin Source (Low side switch)
6	G6	M6 Gate (Low side switch)
7	W	W Terminal
8	DC-3	DC Negative Bus Connection
9	V	V Terminal
10	DC-2	DC Negative Bus Connection
11	U	U Terminal
12	DC-1	DC Negative Bus Connection
13	S1	M1 Kelvin Source (High side switch)
14	G1	M1 Gate (High side switch)
15	S3	M3 Kelvin Source (High side switch)
16	DC+	DC Positive Bus Connection
17	G3	M3 Gate (High side switch)
18	S5	M5 Kelvin Source (High side switch)
19	DC+	DC Positive Bus Connection
20	G5	M5 Gate (High side switch)
21	DC+	DC Positive Bus Connection
22	TH1	Thermistor Connection 1
23	TH2	Thermistor Connection 2

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
SIC MOSFET			
Drain-Source Voltage	V _{DSS}	1200	V
Gate-Source Voltage	V _{GS}	+20 / -10	V
Continuous Drain Current @ T _C = 80 °C (T _J = 175°C)	I _D	39	А
Pulsed Drain Current (T _J = 150°C)	I _{D(Pulse)}	118	А
Maximum Power Dissipation (T _J = 175°C)	P _{tot}	102	W
Minimum Operating Junction Temperature	T_{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	175	°C
THERMAL PROPERTIES			
Storage Temperature Range	T _{stg}	-40 to 150	°C
INSULATION PROPERTIES			
Isolation Test Voltage, t = 1 s, 60 Hz	V _{is}	4800	V _{RMS}
Creepage Distance		12.7	mm
СТІ		600	
Substrate Ceramic Material		Al ₂ O ₃	
Substrate Ceramic Material Thickness		0.32	mm

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING RANGES

Rating	Symbol	Min	Max	Unit
Module Operating Junction Temperature	T_J	-40	150	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
SIC MOSFET CHARACTERISTICS						
Zero Gate Voltage Drain Current	V _{GS} = 0 V, V _{DS} = 1200 V, T _J = 25°C	I _{DSS}	-	_	1000	μΑ
Drain-Source On Resistance (Note 1)	V _{GS} = 18 V, I _D = 30 A, T _J = 25°C	R _{DS(ON)}	_	31.5	40	mΩ
	V _{GS} = 18 V, I _D = 30 A, T _J = 125°C		_	49.5	_	
	V _{GS} = 18 V, I _D = 30 A, T _J = 150°C	1	-	57.2	_	
	V _{GS} = 18 V, I _D = 30 A, T _J = 175°C	1	-	66	-	
Gate-Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 15 \text{ mA}$	V _{GS(TH)}	2.04	2.4	4.4	V
Recommended Gate Voltage		V_{GOP}	-3	-	+18	V
Gate-to-Source Leakage Current	V _{GS} = +22 / -10 V, V _{DS} = 0 V	I _{GSS}	_	-	±1	μΑ
Input Capacitance	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 800 V	C _{ISS}	=	2377	=	pF
Reverse Transfer Capacitance		C _{RSS}	-	11.6	_	
Output Capacitance		C _{OSS}	-	114	_	
Total Gate Charge	$V_{GS} = -3/18 \text{ V}, V_{DS} = 800 \text{ V}, I_D = 30 \text{ A}$	$Q_{G(TOTAL)}$	-	110	_	nC
Gate-Source Charge		Q _{GS}	-	20	-	
Gate-Drain Charge	7	Q_{GD}	-	27	_	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
Turn-on Delay Time	T _J = 25°C	t _{d(on)}	-	19.6	-	ns
Rise Time	V_{DS} = 800 V, I_D = 30 A V_{GS} = -3/18 V, R_G = 3.9 Ω	t _r	_	6.6	_	1
Turn-off Delay Time	1	t _{d(off)}	_	84.8	_	1
Fall Time	1	t _f	_	9.4	_	1
Turn-on Switching Loss per Pulse	1	E _{ON}	-	610	-	μJ
Turn-off Switching Loss per Pulse	1	E _{OFF}	-	54	-	1
Turn-on Delay Time	T _J = 150°C	t _{d(on)}	_	18.8	_	ns
Rise Time	V_{DS} = 800 V, I_{D} = 30 A V_{GS} = -3/18 V, R_{G} = 3.9 Ω	t _r	-	5.6	-	1
Turn-off Delay Time	1	t _{d(off)}	-	93	-	1
Fall Time	1	t _f	=	9	-	1
Turn-on Switching Loss per Pulse	1	E _{ON}	=	800	-	μJ
Turn-off Switching Loss per Pulse	1	E _{OFF}	=	89	-	1
Diode Forward Voltage	$I_{SD} = 30 \text{ A}, V_{GS} = -3V, T_{J} = 25^{\circ}C,$	V _{SD}	=	4.67	-	V
	I _{SD} = 30 A, V _{GS} = -3V, T _J = 125°C	1	=	4.45	-	1
	I _{SD} = 30 A, V _{GS} = -3V, T _J = 150°C	1	_	4.4	-	1
Thermal Resistance - Chip-to-Case	M1, M2, M3, M4, M5, M6	R _{thJC}	-	0.93	-	°C/W
Thermal Resistance - Chip-to-Heatsink	Thermal grease, Thickness = 2 Mil ±2% A = 2.8 W/mK	R _{thJH}	-	1.42	_	°C/W
THERMISTOR CHARACTERISTICS						
Nominal Resistance	T = 25°C	R25	=	5	_	kΩ
	T = 100°C	R100	=	457	_	Ω
	T = 150°C	R150	=	159.5	-	Ω
Deviation of R100	T = 100°C	ΔR/R	-5	_	5	%
Power Dissipation – Recommended Limit	0.15 mA, Non-self-heating Effect	P _D	=	0.1	=	mW
Power Dissipation – Absolute Maximum	5 mA	P _D	=	34.2	-	mW
Power Dissipation Constant			=	1.4	-	mW/K
B*value	B(25/50), tolerance ±2%		=	3375	=	K

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe

3436

B(25/100), tolerance $\pm 2\%$

ORDERING INFORMATION

B*value

Device Order Number	Device Marking	Package	Shipping
NXH030S120M3F1PTG	NXH030S120M3F1PTG	F1: Case 180DA Press-fit Pins with pre-applied thermal interface material (TIM) (Pb-Free / Halide Free)	28 Units / Blister Tray

Operating parameters.

TYPICAL CHARACTERISTICS - M1~M6 SIC MOSFET CHARACTERISTICS

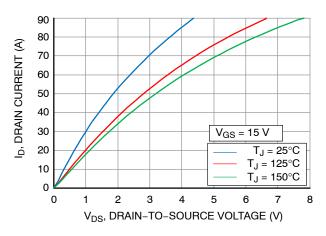


Figure 2. MOSFET Typical Output Characteristics $V_{GS} = 15 \text{ V}$

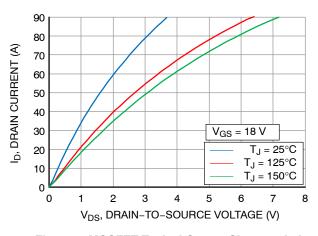


Figure 3. MOSFET Typical Output Characteristics $V_{GS} = 18 \text{ V}$

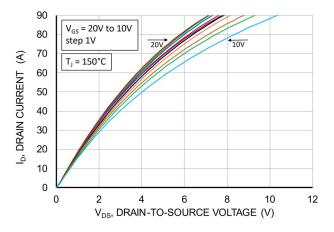


Figure 4. MOSFET Typical Output Characteristics $V_{GS} = var$.

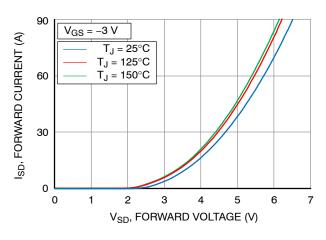


Figure 5. Body Diode Forward Characteristics

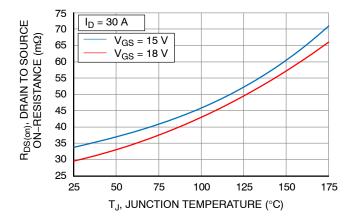


Figure 6. R_{DS(on)} Drain to Source On Resistance vs. Junction Temperature

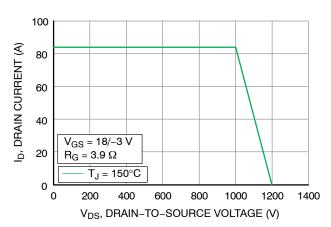


Figure 7. Reverse Bias Safe Operating Area (RBSOA)

TYPICAL CHARACTERISTICS - M1~M6 MOSFET CHARACTERISTICS (continued)

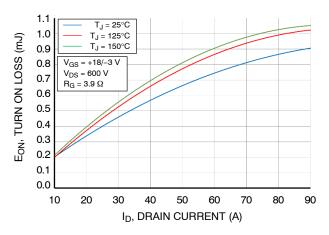


Figure 8. Switching On Loss vs. Drain Current $V_{DS} = 600 \text{ V}$

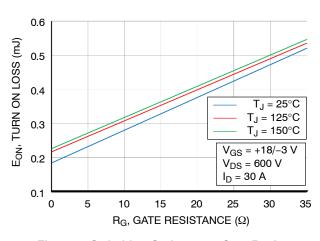


Figure 9. Switching On Loss vs. Gate Resistance $V_{DS} = 600 \text{ V}$

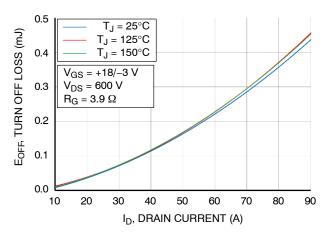


Figure 10. Switching Off Loss vs. Drain Current $V_{DS} = 600 \text{ V}$

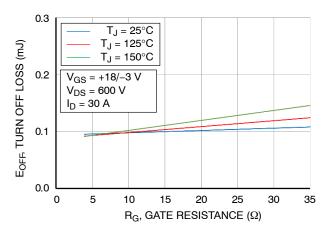


Figure 11. Switching Off Loss vs. Gate Resistance $V_{DS} = 600 \text{ V}$

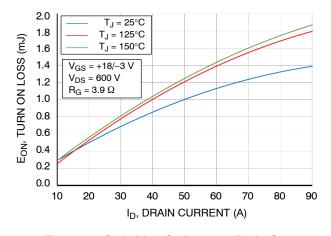


Figure 12. Switching On Loss vs. Drain Current V_{DS} = 800 V

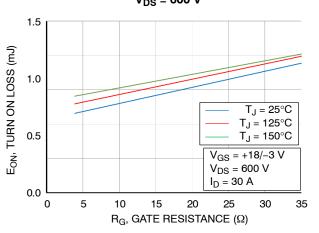


Figure 13. Switching On Loss vs. Gate Resistance V_{DS} = 800 V

TYPICAL CHARACTERISTICS - M1 / M2 MOSFET CHARACTERISTICS (continued)

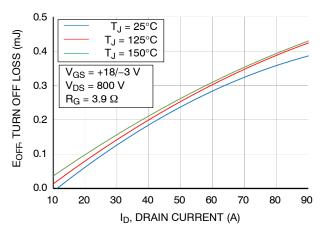


Figure 14. Switching Off Loss vs. Drain Current V_{DS} = 800 V

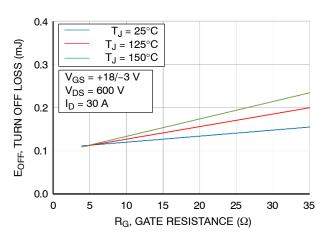


Figure 15. Switching Off Loss vs. Gate Resistance V_{DS} = 800 V

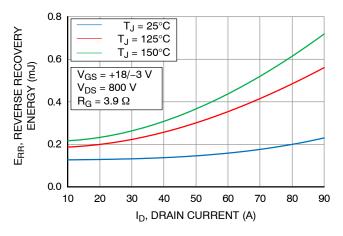


Figure 16. Reverse Recovery Energy vs. Drain Current V_{DS} = 800 V

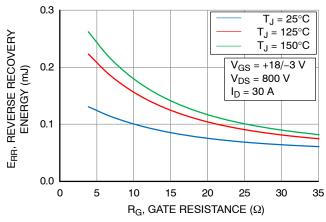


Figure 17. Reverse Recovery Energy vs. Gate Resistance V_{DS} = 800 V

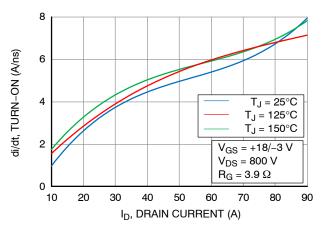


Figure 18. di/dt Turn On vs. Drain Current V_{DS} = 800 V

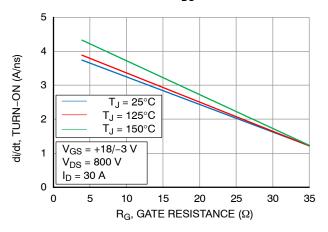


Figure 19. di/dt Turn On vs. Gate Resistance V_{DS} = 800 V

TYPICAL CHARACTERISTICS - M1 / M2 MOSFET CHARACTERISTICS (continued)

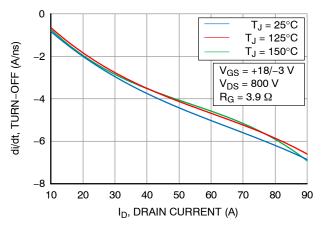


Figure 20. di/dt Turn Off vs. Drain Current V_{DS} = 800 V

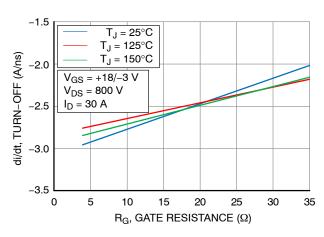


Figure 21. di/dt Turn Off vs. Gate Resistance $V_{DS} = 800 \text{ V}$

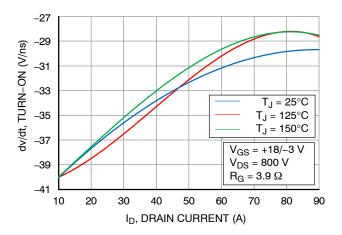


Figure 22. dv/dt Turn On vs. Drain Current V_{DS} = 800 V

Figure 23. dv/dt Turn On vs. Gate Resistance V_{DS} = 800 V

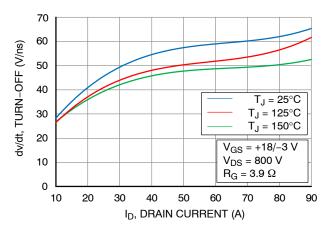


Figure 24. dv/dt Turn Off vs. Drain Current V_{DS} = 800 V

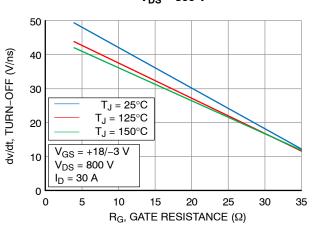
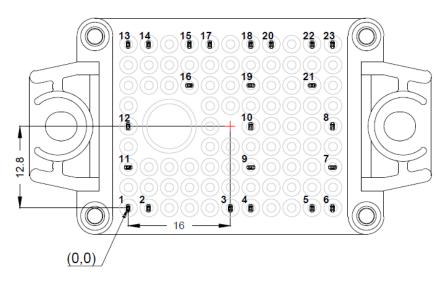
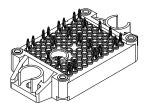
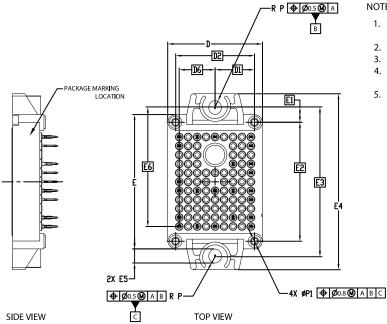



Figure 25. dv/dt Turn Off vs. Gate Resistance V_{DS} = 800 V

Table 1. CAUER NETWORKS


Cauer Element #	Rth (K/W)	Cth (Ws/K)
1	0.0006	0.0004
2	0.015	0.0002
3	0.009	0.0008
4	0.139	0.0009
5	0.177	0.0058
6	0.301	0.0176
7	0.224	0.0499

* Pin position


Pin #	Х	Υ	Function	Pin#	X	Υ	Function
1	0	0	G2	13	0	25.6	S1
2	3.2	0	S2	14	3.2	25.6	G1
3	16	0	S4	15	9.6	25.6	S3
4	19.2	0	G4	16	9.6	19.2	DC+
5	28.8	0	S6	17	12.8	25.6	G3
6	32	0	G6	18	19.2	25.6	S5
7	32	6.4	W	19	19.2	19.2	DC+
8	32	12.8	DC-3	20	22.4	25.6	G5
9	19.2	6.4	V	21	28.8	19.2	DC+
10	19.2	12.8	DC-2	22	28.8	25.6	TH1
11	0	6.4	U	23	32	25.6	TH2
12	0	12.8	DC-1				

PACKAGE DIMENSIONS

PIM23 33.80x42.50x12.00 CASE 180DA ISSUE O

DATE 22 AUG 2024

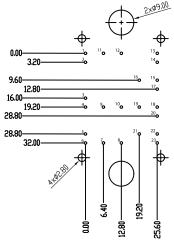
Ф Ø0.4 A B С

END VIEW

NOTES:

- DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5 - 2018.
- ALL DIMENSIONS ARE IN MILLIMETERS.
- PIN-GRID IS 3.2mm.
- PACKAGE MARKING ARE LOCATED ON BOTH SIDES OF THE PACKAGE.
- THE PINS ARE TIN PLATED.

М	ILLIMETERS			
MIN	NOM	MAX		
16.00	16.50	17.00		
0.00	0.35	0.60		
11.65	12.00	12.35		
0.95	1.20	1.25		
33.50	33.80	34.10		
14.05 BSC				
28.10 BSC				
12.80 BSC				
47.70	48.00	48.30		
	5.50 BSC			
	42.50 BSC			
	53.00 BSC			
62.30	62.80	63.30		
4.90 5.00 5.10				
42.75BSC				
2.20	2.25	2.30		
2.20	2.30	2.40		
	MIN 16.00 0.00 11.65 0.95 33.50 47.70 62.30 4.90	16.00 16.50 0.00 0.35 11.65 12.00 0.95 1.20 33.50 33.80 14.05 BSC 28.10 BSC 12.80 BSC 47.70 48.00 5.50 BSC 42.50 BSC 42.50 BSC 62.30 62.80 4.90 5.00 42.75BSC 2.20 2.25		


À

PIM23 33.80x42.50x12.00 CASE 180DA ISSUE O

DATE 22 AUG 2024

แก	TE	

Pin	Х	Υ	Pin	Х	Υ
1	0	0	13	25.6	0
2	0	3.2	14	25.6	3.2
3	0	16	15	25.6	9.6
4	0	19.2	16	19.2	9.6
5	0	28.8	17	25.6	12.8
6	0	32	18	25.6	19.2
7	6.4	32	19	19.2	19.2
8	12.8	32	20	25.6	22.4
9	6.4	19.2	21	19.2	28.8
10	12.8	19.2	22	25.6	28.8
11	6.40	0	23	25.6	32
12	12.8	0			

RECOMMENDED MOUNTING PATTERN

* For additional Information on our Pb—Free strategy and soldering details, please download the Onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	xxxx	XXXX		
FRONTS	SIDE M	ARKIN	G	
	2D CODE			

BACKSIDE MARKING

XXXXX = Specific Device Code
AT = Assembly & Test Site Code
YYWW = Year and Work Week Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales