Silicon Carbide (SiC) Module – EliteSiC Power Module for Traction Inverter, Single-Side Direct Cooling, 2.2 mohm, 900 V, 6-Pack

NVXR22S90M2SPB

Product Description
The NVXR22S90M2SPB is part of the EliteSiC power module for traction inverter, a revolutionary high mobility compound semiconductor product family that offers increased performance, better efficiency, and higher power density in similar and highly compatible packaging solutions.

The module integrates 900 V SiC MOSFET in a 6-pack configuration. For assembly ease and reliability, a new generation of press-fit pins are integrated into the power module for signal terminals. In addition, it also integrates an optimized pin-fin heatsink in the baseplate.

To enhance reliability and thermal performance, sintering technology is applied for die attach. The module is designed to meet AQG324 automotive standard.

Features
- Direct Cooling w/ integrated Pin-fin Heatsink
- Silicon Nitride Isolator
- \(T_{Vj,\text{Max}} = 175°C \) for Continuous Operation
- Automotive Grade SiC MOSFET Chip Technologies
- Sintered Die Technology for High Reliability Performance
- Easy to Integrate 6-pack Topology
- Automotive Module AQG324 Compliant
- These Devices are Pb-Free and are RoHS Compliant

Typical Applications
- Hybrid and Electric Vehicle Traction Inverter

MARKING DIAGRAM

XXXXXXXXX
ATYYWW

XXXXX = Specific Device Code
AT = Assembly & Test Site Code
YYWW = Year and Work Week Code

PIN DESCRIPTION

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
<th>Shipping</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVXR22S90M2SPB</td>
<td>SSDC39 (Pb-Free)</td>
<td>4 Units / Tray</td>
</tr>
</tbody>
</table>
Pin Description

PIN FUNCTION DESCRIPTION

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Pin Function Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1, P2, P3</td>
<td>Positive Power Terminals</td>
</tr>
<tr>
<td>N1, N2, N3</td>
<td>Negative Power Terminals</td>
</tr>
<tr>
<td>1</td>
<td>Phase 1 Output</td>
</tr>
<tr>
<td>2</td>
<td>Phase 2 Output</td>
</tr>
<tr>
<td>3</td>
<td>Phase 3 Output</td>
</tr>
<tr>
<td>G1 – G6</td>
<td>SiC MOSFET Gate</td>
</tr>
<tr>
<td>S1 – S6</td>
<td>SiC MOSFET Source / Gate Return</td>
</tr>
<tr>
<td>D1 – D6</td>
<td>SiC MOSFET Drain Sense</td>
</tr>
<tr>
<td>T11, T12</td>
<td>Phase 1 Temperature Sensor Output</td>
</tr>
<tr>
<td>T21, T22</td>
<td>Phase 2 Temperature Sensor Output</td>
</tr>
<tr>
<td>T31, T32</td>
<td>Phase 3 Temperature Sensor Output</td>
</tr>
</tbody>
</table>

Materials
DBC Substrate: Si₃N₄ isolated substrate, basic isolation
Terminals: Copper + Tin electro-plating
Signal Leads: Copper + Tin plating
Pin–fin Base plate: Copper + Ni plating

Flammability Information
The module frame meets UL94V–0 flammability rating
MODULE CHARACTERISTICS (T\(_{\text{Vj}}\) = 25°C, Unless Otherwise Specified)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{\text{Vj}})</td>
<td>Operating Junction Temperature</td>
<td>−40 to 175</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{\text{TSG}})</td>
<td>Storage Temperature Range</td>
<td>−40 to 125</td>
<td>°C</td>
</tr>
<tr>
<td>(V_{\text{ISO}})</td>
<td>Isolation Voltage (AC, 50 Hz, 5 s)</td>
<td>4200</td>
<td>V</td>
</tr>
<tr>
<td>(L_{\text{SS}})</td>
<td>Stray Inductance</td>
<td>8</td>
<td>nH</td>
</tr>
<tr>
<td>(R_{\text{DD\text{–}SS}})</td>
<td>Module Lead Resistance, Terminals–Chip</td>
<td>0.6</td>
<td>mΩ</td>
</tr>
<tr>
<td>(G)</td>
<td>Module Weight</td>
<td>700</td>
<td>g</td>
</tr>
<tr>
<td>(\text{CTI})</td>
<td>Comparative Tracking Index</td>
<td>>200</td>
<td>–</td>
</tr>
<tr>
<td>d(_{\text{creep}})</td>
<td>Creepage: Terminal to Heatsink</td>
<td>9.0</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td>Terminal to Terminal</td>
<td>9.0</td>
<td>mm</td>
</tr>
<tr>
<td>d(_{\text{clear}})</td>
<td>Clearance: Terminal to Heatsink</td>
<td>4.5</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td>Terminal to Terminal</td>
<td>4.5</td>
<td>mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta p)</td>
<td>Pressure Drop in Cooling Circuit</td>
<td>10 L/min, 65°C, 50/50 EGW</td>
<td>–</td>
<td>95</td>
<td>–</td>
<td>mbar</td>
</tr>
<tr>
<td>P (Note 1)</td>
<td>Maximum Pressure in Cooling Loop (relative)</td>
<td>1. EPDM rubber 50 durometer ‘O’ ring used.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T(_{\text{Baseplate}}) < 40°C</td>
<td>–</td>
<td>–</td>
<td>2.5</td>
<td>2.0</td>
<td>bar</td>
</tr>
<tr>
<td></td>
<td>T(_{\text{Baseplate}}) > 40°C</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS (T\(_{\text{Vj}}\) = 25°C, Unless Otherwise Specified)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{DS}})</td>
<td>Drain–to–Source Voltage</td>
<td>900</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{GS}})</td>
<td>Gate–to–Source Voltage</td>
<td>+22/−8</td>
<td>V</td>
</tr>
<tr>
<td>(I_{\text{DS}})</td>
<td>Continuous DC Drain Current, (V_{\text{GS}} = 18 \text{ V}, T_{\text{Vj}} = 175°C, T_F = 65°C @ 10\text{LPM}, R_{\text{thj,F}}\text{max}) (Note 2)</td>
<td>510</td>
<td>A</td>
</tr>
<tr>
<td>(I_{\text{DS\text{–}pulsed}})</td>
<td>Pulsed Drain Current @ (V_{\text{GS}} = 18 \text{ V}, \text{limited by } T_{\text{Vj,max}})</td>
<td>1020</td>
<td>A</td>
</tr>
<tr>
<td>(I_{\text{SD\text{–}BD}})</td>
<td>Continuous DC Body Diode Current, (V_{\text{GS}} = −5 \text{ V}, T_{\text{Vj}} = 175°C, T_F = 65°C @ 10\text{LPM},) using Ref. Heatsink (Note 2)</td>
<td>230</td>
<td>A</td>
</tr>
<tr>
<td>(I_{\text{SD\text{–}pulsed}})</td>
<td>Pulsed Body Diode Current, (V_{\text{GS}} = −5 \text{ V}, \text{limited by } T_{\text{Vj,max}})</td>
<td>1020</td>
<td>A</td>
</tr>
<tr>
<td>(P_{\text{tot}})</td>
<td>Total Power Dissipation (T_{\text{Vj,max}} = 175°C, T_F = 65°C,) Ref. Heatsink (typ)</td>
<td>900</td>
<td>W</td>
</tr>
</tbody>
</table>

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. EPDM rubber 50 durometer ‘O’ ring used.
2. Verified by characterization/design, not by test.
MOSFET CHARACTERISTICS (T\text{\textsubscript{Vj}} = 25\,^{\circ}\text{C}, Unless Otherwise Specified)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ.</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R\text{\scriptsize{DS(ON)}}</td>
<td>Drain – Source On Resistance</td>
<td>V\text{\scriptsize{GS}} = 18 V, I\text{\scriptsize{D}} = 510 A</td>
<td>T\text{\scriptsize{Vj}} = 25,^{\circ}\text{C}</td>
<td>2.20</td>
<td>3.10</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T\text{\scriptsize{Vj}} = 175,^{\circ}\text{C}</td>
<td>–</td>
<td>–</td>
<td>2.70</td>
</tr>
<tr>
<td>I\text{\scriptsize{DSS}}</td>
<td>Zero Gate Voltage Drain Current</td>
<td>V\text{\scriptsize{GS}} = 0 V, V\text{\scriptsize{DS}} = 900 V</td>
<td>T\text{\scriptsize{Vj}} = 25,^{\circ}\text{C}</td>
<td>–</td>
<td>2</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T\text{\scriptsize{Vj}} = 175,^{\circ}\text{C}</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>I\text{\scriptsize{GSS}}</td>
<td>Gate – Source Leakage Current</td>
<td>V\text{\scriptsize{GS}} = 18 V, V\text{\scriptsize{DS}} = 0 V</td>
<td>–</td>
<td>–</td>
<td>6</td>
<td>\mu\text{A}</td>
</tr>
<tr>
<td>V\text{\scriptsize{GS(TH)}}</td>
<td>Threshold Voltage</td>
<td>V\text{\scriptsize{GS}} = V\text{\scriptsize{DS}} , I\text{\scriptsize{D}} = 150 mA</td>
<td>–</td>
<td>1.8</td>
<td>2.7</td>
<td>4.3</td>
</tr>
<tr>
<td>g\text{\scriptsize{fs}}</td>
<td>Forward Transconductance</td>
<td>V\text{\scriptsize{DS}} = 20 V, I\text{\scriptsize{D}} = 510 A</td>
<td>–</td>
<td>200</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Q\text{\scriptsize{G}}</td>
<td>Total Gate Charge</td>
<td>V\text{\scriptsize{GS}} = 5/18 V, V\text{\scriptsize{DS}} = 400 V, I\text{\scriptsize{D}} = 510 A</td>
<td>–</td>
<td>1.8</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>R\text{\scriptsize{g,int}}}</td>
<td>Internal gate resistance</td>
<td></td>
<td>–</td>
<td>0.9</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>C\text{\scriptsize{iss}}</td>
<td>Input Capacitance</td>
<td>V\text{\scriptsize{DS}} = 400 V, V\text{\scriptsize{GS}} = 0 V, f = 100 kHz</td>
<td>–</td>
<td>35</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>C\text{\scriptsize{oss}}</td>
<td>Output Capacitance</td>
<td></td>
<td>–</td>
<td>2.5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>C\text{\scriptsize{rss}}</td>
<td>Reverse Transfer Capacitance</td>
<td></td>
<td>–</td>
<td>0.2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>T\text{\scriptsize{d.on}}}</td>
<td>Turn on delay, inductive load</td>
<td>I\text{\scriptsize{D}} = 510 A, V\text{\scriptsize{DS}} = 400 V, V\text{\scriptsize{GS}} = +18 / – 5 V, R\text{\scriptsize{g, on}} = 5.0 \Omega</td>
<td>T\text{\scriptsize{Vj}} = 25,^{\circ}\text{C}</td>
<td>–</td>
<td>106</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T\text{\scriptsize{Vj}} = 175,^{\circ}\text{C}</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>T\text{\scriptsize{r}}}</td>
<td>Rise time, inductive load</td>
<td></td>
<td>T\text{\scriptsize{Vj}} = 25,^{\circ}\text{C}</td>
<td>–</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T\text{\scriptsize{Vj}} = 175,^{\circ}\text{C}</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>T\text{\scriptsize{d.off}}}</td>
<td>Turn off delay, inductive load</td>
<td>I\text{\scriptsize{D}} = 510 A, V\text{\scriptsize{DS}} = 400 V, V\text{\scriptsize{GS}} = +18 / – 5 V, R\text{\scriptsize{g, off}} = 2.4 \Omega</td>
<td>T\text{\scriptsize{Vj}} = 25,^{\circ}\text{C}</td>
<td>–</td>
<td>295</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T\text{\scriptsize{Vj}} = 175,^{\circ}\text{C}</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>T\text{\scriptsize{f}}}</td>
<td>Fall time, inductive load</td>
<td></td>
<td>T\text{\scriptsize{Vj}} = 25,^{\circ}\text{C}</td>
<td>–</td>
<td>48</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T\text{\scriptsize{Vj}} = 175,^{\circ}\text{C}</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>E\text{\scriptsize{on}}}</td>
<td>Turn On Switching Loss (including diode reverse recovery loss)</td>
<td>I\text{\scriptsize{D}} = 510 A, V\text{\scriptsize{DS}} = 400 V, V\text{\scriptsize{GS}} = +18 / – 5 V, L\text{\scriptsize{S}} = 19 \text{\textmu}H, R\text{\scriptsize{g, on}} = 5.0 \Omega</td>
<td>di/\text{\textit{dt}} = 4.2 A/\text{\textmu}s, T\text{\scriptsize{Vj}} = 25,^{\circ}\text{C}</td>
<td>–</td>
<td>14</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>di/\text{\textit{dt}} = 4.7 A/\text{\textmu}s, T\text{\scriptsize{Vj}} = 175,^{\circ}\text{C}</td>
<td>–</td>
<td>12</td>
<td>–</td>
</tr>
<tr>
<td>E\text{\scriptsize{off}}}</td>
<td>Turn Off Switching Loss</td>
<td>I\text{\scriptsize{D}} = 510 A, V\text{\scriptsize{DS}} = 400 V, V\text{\scriptsize{GS}} = +18 / – 5 V, L\text{\scriptsize{S}} = 19 \text{\textmu}H, R\text{\scriptsize{g, off}} = 2.4 \Omega</td>
<td>dv/\text{\textit{dt}} = 6.1 V/\text{\textmu}s, T\text{\scriptsize{Vj}} = 25,^{\circ}\text{C}</td>
<td>–</td>
<td>12</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>dv/\text{\textit{dt}} = 6.1 V/\text{\textmu}s, T\text{\scriptsize{Vj}} = 175,^{\circ}\text{C}</td>
<td>–</td>
<td>13</td>
<td>–</td>
</tr>
<tr>
<td>E\text{\scriptsize{SC}}}</td>
<td>Short Circuit Energy withstand</td>
<td>V\text{\scriptsize{GS}} = 18 V, V\text{\scriptsize{DD}} = 400 V</td>
<td>T\text{\scriptsize{Vj}} = 25,^{\circ}\text{C}</td>
<td>–</td>
<td>8.7</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T\text{\scriptsize{Vj}} = 175,^{\circ}\text{C}</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
NVXR22S90M2SPB

BODY DIODE CHARACTERISTICS (T_{\text{vj}} = 25°C, Unless Otherwise Specified)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{SD}</td>
<td>Diode Forward Voltage</td>
<td>$V_{\text{GS}} = -5 \text{ V}, I_{\text{SD}} = 230 \text{ A}$</td>
<td>$T_{\text{vj}} = 25°C$</td>
<td>4.0</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_{rr}</td>
<td>Reverse Recovery Energy</td>
<td>$I_{\text{SD}} = 510 \text{ A}$, $V_{\text{R}} = 400 \text{ V}$, $V_{\text{GS}} = -5 \text{ V}$, $R_{\text{g,on}} = 5.0 \Omega$</td>
<td>$\text{di/dt} = 4.2 \text{ A/ns}$, $T_{\text{vj}} = 25°C$</td>
<td>0.4</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q_{rr}</td>
<td>Recovered Charge</td>
<td>$T_{\text{vj}} = 25°C$</td>
<td>2.4</td>
<td>5.0</td>
<td>μC</td>
</tr>
<tr>
<td>I_{rr}</td>
<td>Peak Reverse Recovery Current</td>
<td>$T_{\text{vj}} = 25°C$</td>
<td>113</td>
<td>168</td>
<td>A</td>
</tr>
</tbody>
</table>

NTC SENSOR CHARACTERISTICS (T_{\text{vj}} = 25°C, Unless Otherwise Specified)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{25}</td>
<td>Rated Resistance</td>
<td>$T_{\text{c}} = 25°C$</td>
<td>5</td>
<td>5</td>
<td>kΩ</td>
</tr>
<tr>
<td>$\Delta R/R$</td>
<td>Deviation of R_{25}</td>
<td>$T_{\text{c}} = 25°C$, $R_{25} = 5 \text{ kΩ}$</td>
<td>-5</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>P_{25}</td>
<td>Power Dissipation</td>
<td>$T_{\text{c}} = 25°C$</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>$B_{25/50}$</td>
<td>B-Value</td>
<td>$R = R_{25} \exp \left[B_{25/50} \left(1/T_{\text{c}} - 1/298 \right) \right]$</td>
<td>-3375</td>
<td>-</td>
<td>K</td>
</tr>
<tr>
<td>$B_{25/80}$</td>
<td>B-Value</td>
<td>$R = R_{25} \exp \left[B_{25/80} \left(1/T_{\text{c}} - 1/298 \right) \right]$</td>
<td>-3411</td>
<td>-</td>
<td>K</td>
</tr>
<tr>
<td>$B_{25/120}$</td>
<td>B-Value</td>
<td>$R = R_{25} \exp \left[B_{25/120} \left(1/T_{\text{c}} - 1/298 \right) \right]$</td>
<td>-3433</td>
<td>-</td>
<td>K</td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{\text{th,J-F}}$</td>
<td>FET Junction to Fluid</td>
<td>$R_{\text{in}}, \text{Junction to Fluid, 10 L/min, 65°C, 50/50 EGW}$</td>
<td>0.12</td>
<td>0.131</td>
<td></td>
<td>°C/W</td>
</tr>
</tbody>
</table>
TYPICAL CHARACTERISTICS

Figure 2. Output Characteristics

Figure 3. Normalized On-state Resistance vs. Drain Current

Figure 4. Normalized On-state Resistance vs. Temperature

Figure 5. Transfer Characteristic

Figure 6. 3rd Quadrant Characteristic at $V_{GS} = 18$ V

Figure 7. 3rd Quadrant Characteristic at $V_{GS} = 0$ V
TYPICAL CHARACTERISTICS

Figure 8. 3rd Quadrant Characteristic at $V_{GS} = -5$ V

Figure 9. Gate Threshold Voltage vs. Temperature

Figure 10. Typical Capacitance vs. Drain–Source Voltage

Figure 11. Switching Energies at 25°C

Figure 12. Switching Energies at 175°C

Figure 13. Reverse Recovery Energy vs. Drain–Source Current
TYPICAL CHARACTERISTICS

Figure 14. Switching Energies vs. External Gate Resistor

Figure 15. Reverse Recovery Energy vs External Gate Resistor

Figure 16. Timing Characteristics vs. Drain–Source Current

Figure 17. Typical Thermal Impedance, Junction to Fluid

Figure 18. Typical Thermal Resistance vs. Flow Rate

Figure 19. Pressure Drop in Cooling Circuit
TYPICAL CHARACTERISTICS

Figure 20. MOSFET Breakdown Voltage vs. TVJ

Figure 21. MOSFET RBSOA of Chip and Module

Figure 22. NTC Resistance vs. Temperature

Figure 23. Gate Charge vs. Gate–Source Voltage
MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

SSDC39, 154.50x92.00

CASE 183AM

ISSUE C

DATE 16 AUG 2023

DOCUMENT NUMBER: 98AON34292H

DESCRIPTION: SSDC39, 154.50x92.00

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009,
2. CONTROLLING DIMENSIONS: MILLIMETERS
3. SFb

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code
AT = Assembly & Test Site Code
YYWW = Year and Work Week Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “•”, may or may not be present. Some products may not follow the Generic Marking.

DESIGN AND MANUFACTURING RIGHTS RESERVED

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019