ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

MOSFET – Power, Single

N-Channel

80 V, 13.9 mΩ, 40 A

NVTYS014N08HL

Features

- Small Footprint (3.3 x 3.3 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

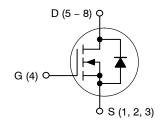
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	80	V
Gate-to-Source Voltage	9		V _{GS}	±20	V
Continuous Drain Current R _{0JC}	Steady	T _C = 25°C	I _D	40	Α
(Notes 1, 2, 3, 4)		T _C = 100°C		28	
Power Dissipation	State	T _C = 25°C	P_{D}	54	W
R _{θJC} (Notes 1, 2, 3)		T _C = 100°C		27	
Continuous Drain	Steady	T _A = 25°C	I _D	10	Α
Current R _{θJA} (Notes 1, 3, 4)		T _A = 100°C		7	
Power Dissipation	State	T _A = 25°C	P_{D}	3	W
R _{θJA} (Notes 1, 3)		T _A = 100°C		2	
Pulsed Drain Current	$T_A = 25$	°C, t _p = 10 μs	I _{DM}	179	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	–55 to +175	ç
Source Current (Body Diode)			I _S	45	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 2.2 A)			E _{AS}	193	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Note 3)	$R_{\theta JC}$	2.8	°C/W
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	47	

- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- Psi (Ψ) is used as required per JESD51–12 for packages in which substantially less than 100% of the heat flows to single case surface.
- 3. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- Continuous DC current rating. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.



ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX	
80 V	13.9 m Ω @ 10 V	40 A	
	17.4 m Ω @ 4.5 V	40 A	

N-Channel

LFPAK8 3.3x3.3 CASE 760AD

MARKING DIAGRAM

014N 08HL AWLYW

014N08HL = Specific Device Code

A = Assembly Location

WL = Wafer Lot
Y = Year
W = Work Week

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS					•	•	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		80			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /	I _D = 250 A, ref to 25°C			57.6		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	DSS $V_{OO} = 0.V$ $T_J = 25^{\circ}C$				10	μА
		$V_{GS} = 0 V$, $V_{DS} = 80 V$	T _J = 125°C			250	1
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _G	_S = 20 V			100	nA
ON CHARACTERISTICS (Note 5)						•	
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D}$	= 45 μΑ	1.2		2.2	V
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _[₎ = 10 A		11.5	13.9	mΩ
		V _{GS} = 4.5 V, I	_O = 10 A		14.3	17.4	1
Forward Transconductance	9FS	V _{DS} = 5 V, I _D	= 15 A		54		S
CHARGES AND CAPACITANCES	•				•	•	
Input Capacitance	C _{iss}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$ $V_{DS} = 40 \text{ V}$			891		pF
Output Capacitance	C _{oss}				121		1
Reverse Transfer Capacitance	C _{rss}				6.5		1
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	I _D = 45 μA, ref to 25°C			-5.7		mV/°C
Threshold Gate Charge	Q _{G(TH)}				1.4		nC
Gate-to-Source Charge	Q_{GS}	V _{GS} = 10 V, V _{DS} = 40 V, I _D = 15 A			2.4		1
Gate-to-Drain Charge	Q_{GD}	1			3		1
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 40 V, I _D = 15 A			15.5		nC
SWITCHING CHARACTERISTICS (No	te 6)						
Turn-On Delay Time	t _{d(on)}				8.7		ns
Rise Time	t _r	V _{GS} = 6.0 V, V _D	s = 64 V,		9		1
Turn-Off Delay Time	t _{d(off)}	I _D = 15 A, R _C	3 = 6 Ω		26		1
Fall Time	t _f				7.5		1
DRAIN-SOURCE DIODE CHARACTER	RISTICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 10 A	T _J = 25°C		0.8	1.2	V
			T _J = 125°C		0.7		7
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } dl_S/dt = 100 \text{ A/}\mu\text{s,}$ $l_S = 15 \text{ A}$			32		ns
Charge Time	t _a				15		1
Discharge Time	t _b				17		1
Reverse Recovery Charge	Q _{RR}				19		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

5. Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.

6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

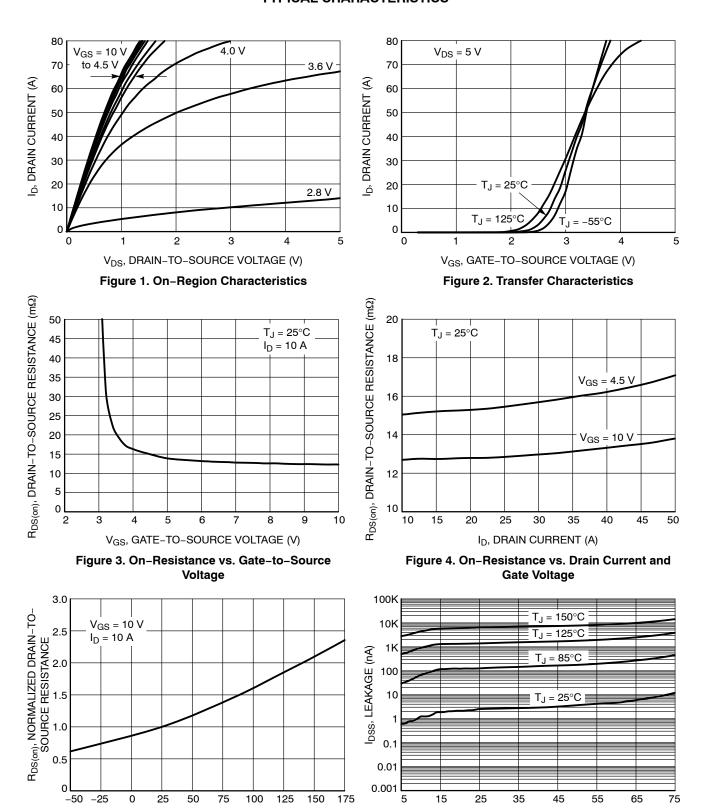


Figure 5. On–Resistance Variation with Temperature

T_J, JUNCTION TEMPERATURE (°C)

Figure 6. Drain-to-Source Leakage Current vs. Voltage

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

TYPICAL CHARACTERISTICS

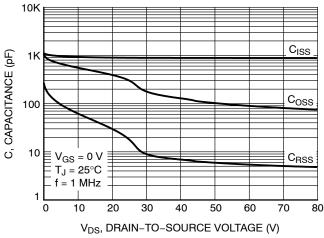


Figure 7. Capacitance Variation

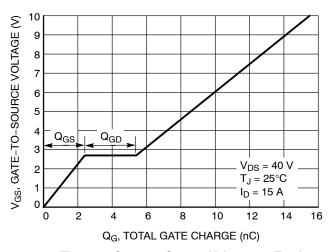


Figure 8. Gate-to-Source Voltage vs. Total Charge

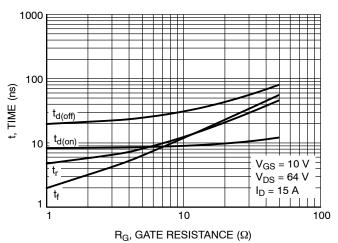


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

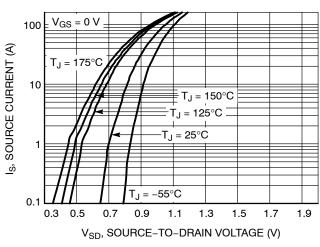


Figure 10. Diode Forward Voltage vs. Current

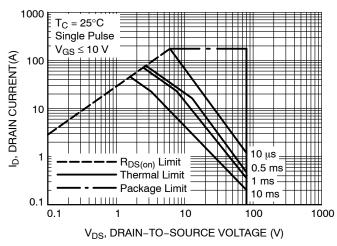


Figure 11. Maximum Rated Forward Biased Safe Operating Area

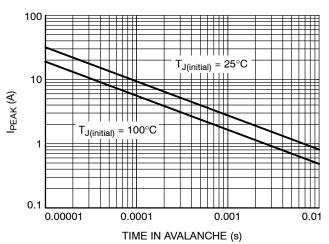


Figure 12. I_{PEAK} vs. Time in Avalanche

TYPICAL CHARACTERISTICS

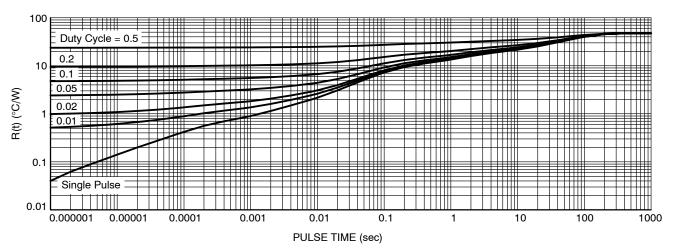
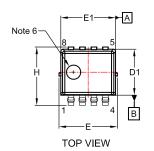
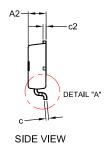
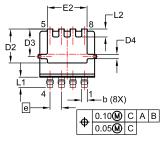


Figure 13. Thermal Characteristics

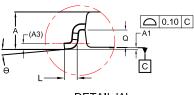
DEVICE ORDERING INFORMATION

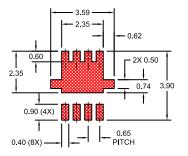

Device	Marking	Package	Shipping [†]
NVTYS014N08HLTWG	014N 08HL	LFPAK33 (Pb-Free)	3000 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


PACKAGE DIMENSIONS

LFPAK8 3.3x3.3, 0.65P


CASE 760AD **ISSUE E**



BOTTOM VIEW

DETAIL 'A' SCALE: 2:1

LAND PATTERN RECOMMENDATION

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERM/D.

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M. 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS OR BURRS SHALL NOT EXCEED 0.150mm PER SIDE.
- DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
- 6. OPTIONAL MOLD FEATURE.

DIM	MILLIMETERS			
DIW	MIN.	NOM.	MAX.	
Α	0.95	1.05	1.15	
A1	0.00	0.05	0.10	
A2	0.95	1.00	1.05	
А3		0.15 RE	F	
b	0.27	0.32	0.37	
С	0.12	0.17	0.22	
c2	0.12	0.17	0.22	
D1	2.50	2.60	2.70	
D2	1.82	1.92	2.02	
D3	1.46	1.56	1.66	
D4	0.20	0.25	0.30	
Е	3.20	3.30	3.40	
E1	3.00	3.10	3.20	
E2	2.15	2.25	2.35	
Ф	0.65 BSC			
Н	3.20	3.30	3.40	
L	0.25	0.37	0.50	
L1	0.48	0.58	0.68	
L2	0.35	0.45	0.55	
Q	0.45	0.50	0.55	
θ	0°	4°	8°	

ON Semiconductor and 🕠 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative