

MOSFET - SiC Power, Single N-Channel, T2PAK

900 V, 16 mΩ, 148 A

NVT2016N090M2

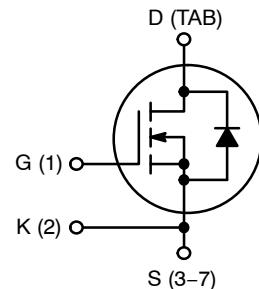
Features

- Typ. $R_{DS(on)}$ = 16 mΩ @ V_{GS} = 18 V
- Ultra Low Gate Charge (typ. $Q_{G(tot)}$ = 250 nC)
- Low Effective Output Capacitance (typ. C_{oss} = 310 pF)
- 100% UIL Tested
- Qualified According to AEC-Q101
- This Device is Halide Free and RoHS Compliant with Exemption 7a, Pb-Free 2LI (on second level interconnection)

Typical Applications

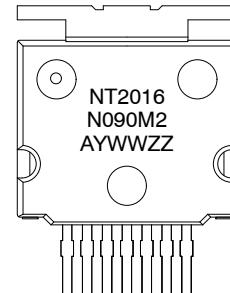
- Automotive On and Off Board Charger
- Automotive DC/DC Converter for EV/HEV

MAXIMUM RATINGS (T_J = 25 °C unless otherwise noted)


Parameter		Symbol	Value	Unit
Drain-to-Source Voltage		V_{DSS}	900	V
Gate-to-Source Voltage		V_{GS}	+22/-8	V
Recommended Operation Values of Gate – Source Voltage	$T_C < 175$ °C	V_{GSop}	+18/-5	V
Continuous Drain Current $R_{θJC}$		I_{DC}	148	A
Power Dissipation $R_{θJC}$		P_{DC}	789	W
Continuous Drain Current $R_{θJC}$		I_{DC}	105	A
Power Dissipation $R_{θJC}$		P_{DC}	395	W
Pulsed Drain Current (Note 1)	$T_A = 25$ °C	I_{DM}	424	A
Operating Junction and Storage Temperature Range	T_J, T_{stg}	-55 to +175		°C
Source Current (Body Diode)	I_S	157	A	
Continuous Drain-Source Diode Forward Current	I_{SD}	157	A	
Pulsed Drain-Source Diode Forward Current (Note 1)	I_{SDM}	424	A	
Single Pulse Drain-to-Source Avalanche Energy ($I_L = 28 A_{pk}$, $L = 1$ mH) (Note 2)	E_{AS}	392	mJ	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Single pulse, limited by max junction temperature.
2. E_{AS} of 392 mJ is based on starting $T_J = 25$ °C; $L = 1$ mH, $I_{AS} = 28$ A, $V_{DD} = 100$ V, $V_{GS} = 18$ V.


$V_{(BR)DSS}$	$R_{DS(ON)}$ MAX	I_D MAX
900 V	23 mΩ @ 18 V	148 A

N-CHANNEL MOSFET

T2PAK
CASE 763AC

MARKING DIAGRAM

NT2016N090M2 = Specific Device Code

A = Assembly Site

WW = Work Week Number

Y = Year of Production, Last Number

ZZ = Assembly Lot Number, Last Two Numbers

ORDERING INFORMATION

Device	Package	Shipping [†]
NVT2016N090M2	T2PAK-7L	800 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Table 1. THERMAL CHARACTERISTICS

Parameter	Symbol	Max	Units
Thermal Resistance Junction-to-Case (Note 3)	$R_{\theta JC}$	0.19	°C/W
Thermal Resistance Junction-to-Ambient (Note 3)	$R_{\theta JA}$	42	°C/W

3. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

Table 2. ELECTRICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise stated)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage	$V_{(BR)DSS}$	$V_{GS} = 0$ V, $I_D = 1$ mA $V_{GS} = -5$ V, $I_D = 1$ mA	900 900			V
Drain-to-Source Breakdown Voltage	$V_{(BR)DSS}$	$V_{GS} = 0$ V, $I_D = 1$ mA, $T_J = -40$ °C $V_{GS} = -5$ V, $I_D = 1$ mA, $T_J = -40$ °C (Note 5)	900 900			V
Zero Gate Voltage Drain Current	I_{DSS}	$V_{GS} = 0$ V, $V_{DS} = 900$ V, $T_J = 25$ °C		1	40	μ A
		$V_{GS} = 0$ V, $V_{DS} = 900$ V, $T_J = 175$ °C (Note 5)			100	
		$V_{GS} = 0$ V, $V_{DS} = 350$ V, $T_J = 25$ °C		0.5	10	
Gate-to-Source Leakage Current	I_{GSS}	$V_{GS} = -8$ V, $V_{DS} = 0$ V	-250			nA
		$V_{GS} = +22$ V, $V_{DS} = 0$ V			250	

ON CHARACTERISTICS

Gate Threshold Voltage	$V_{GS(TH)}$	$V_{GS} = V_{DS}$, $I_D = 20$ mA	1.8	2.7	4.3	V
Recommended Gate Voltage	V_{GSOP}		-5		+18	V
Drain-to-Source On Resistance (Note 4)	$R_{DS(on)}$	$V_{GS} = 18$ V, $I_D = 60$ A, $T_J = 25$ °C		16	23	$\text{m}\Omega$
		$V_{GS} = 18$ V, $I_D = 60$ A, $T_J = 150$ °C		22		
Forward Transconductance	g_{FS}	$V_{DS} = 20$ V, $I_D = 60$ A (Note 5)		49		S

CHARGES, CAPACITANCES & GATE RESISTANCE

Input Capacitance	C_{ISS}	$V_{GS} = 0$ V, $f = 1$ MHz, $V_{DS} = 450$ V (Note 5)		5340		pF
Output Capacitance	C_{OSS}			310		
Reverse Transfer Capacitance	C_{RSS}			29		
Total Gate Charge	$Q_{G(TOT)}$	$V_{GS} = -5/+18$ V, $V_{DS} = 720$ V, $I_D = 60$ A (Note 5)		250		nC
Threshold Gate Charge	$Q_{G(TH)}$			45		
Gate-to-Source Charge	Q_{GS}			69		
Gate-to-Drain Charge	Q_{GD}			75		
Gate-Resistance	R_G		$f = 1$ MHz	1.6		Ω

SWITCHING CHARACTERISTICS

Turn-On Delay Time	$t_{d(ON)}$	$V_{GS} = -5/+18$ V, $V_{DS} = 720$ V, $I_D = 60$ A, $R_G = 2.5$ Ω , Inductive Load (Notes 4, 5)		23		ns
Rise Time	t_r			27		
Turn-Off Delay Time	$t_{d(OFF)}$			50		
Fall Time	t_f			14		
Turn-On Switching Loss	E_{ON}			616		μ J
Turn-Off Switching Loss	E_{OFF}			321		
Total Switching Loss	E_{TOT}			937		

DRAIN-SOURCE DIODE CHARACTERISTICS

Forward Diode Voltage	V_{SD}	$V_{GS} = -5$ V, $I_{SD} = 30$ A, $T_J = 25$ °C		3.8		V
-----------------------	----------	---	--	-----	--	---

Table 2. ELECTRICAL CHARACTERISTICS ($T_J = 25^\circ\text{C}$ unless otherwise stated)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
DRAIN-SOURCE DIODE CHARACTERISTICS						
Reverse Recovery Time	t_{RR}	$V_{GS} = -5/+18\text{ V}$, $I_{SD} = 60\text{ A}$, $dI_S/dt = 4000\text{ A}/\mu\text{s}$, $V_{DS} = 720\text{ V}$ (Note 5)		24		ns
Reverse Recovery Charge	Q_{RR}			570		nC
Reverse Recovery Energy	E_{REC}			270		μJ
Peak Reverse Recovery Current	I_{RRM}			47		A
Charge Time	T_a			12		ns
Discharge Time	T_b			12.4		ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. E_{ON}/E_{OFF} result is with body diode.

5. Defined by design, not subject to production test.

TYPICAL CHARACTERISTICS

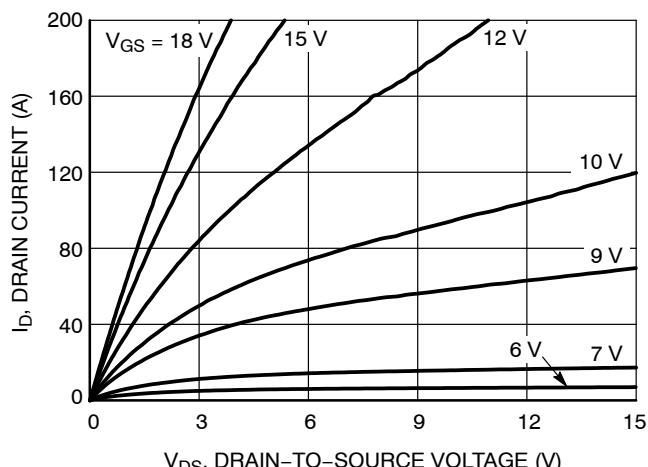


Figure 1. On-Region Characteristics

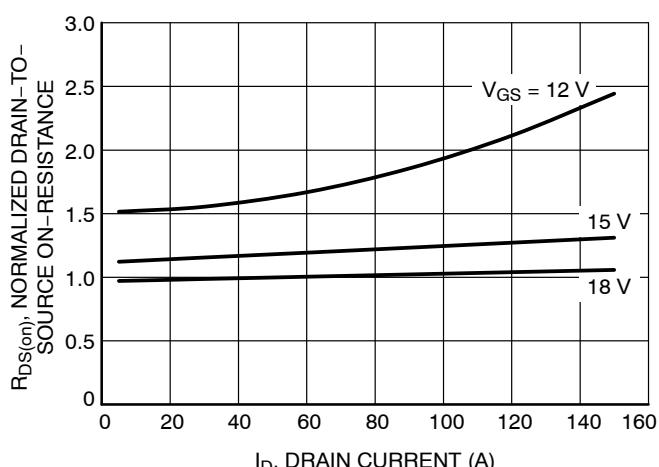


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

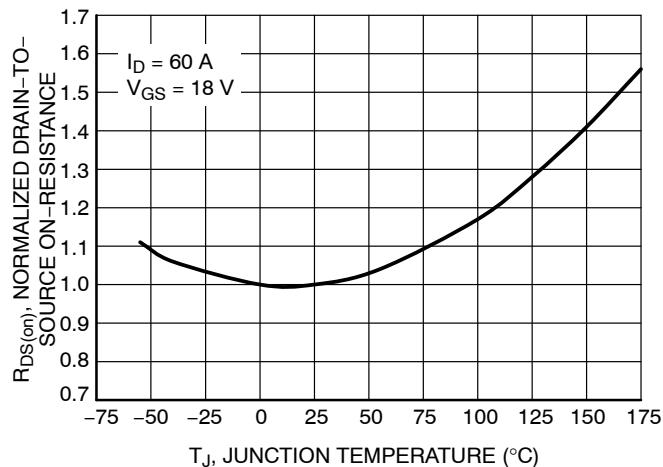


Figure 3. On-Resistance Variation with Temperature

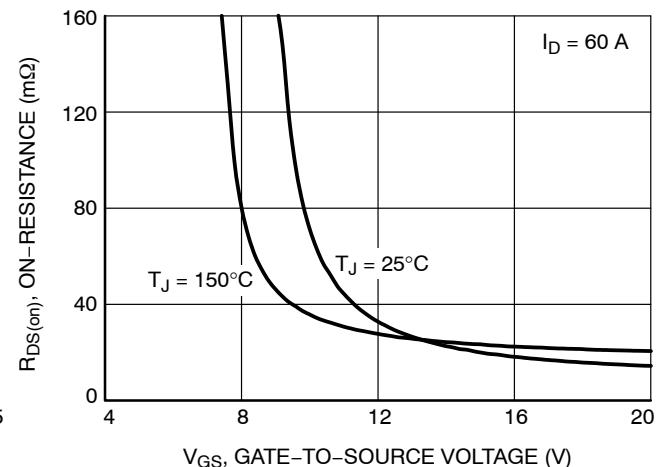


Figure 4. On-Resistance vs. Gate-to-Source Voltage

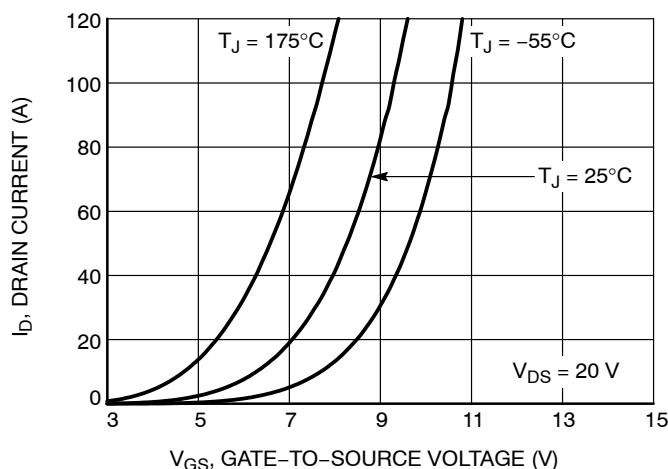


Figure 5. Transfer Characteristics

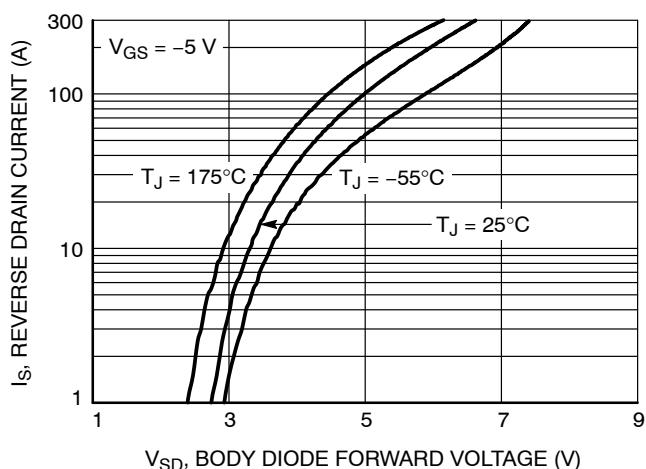


Figure 6. Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS

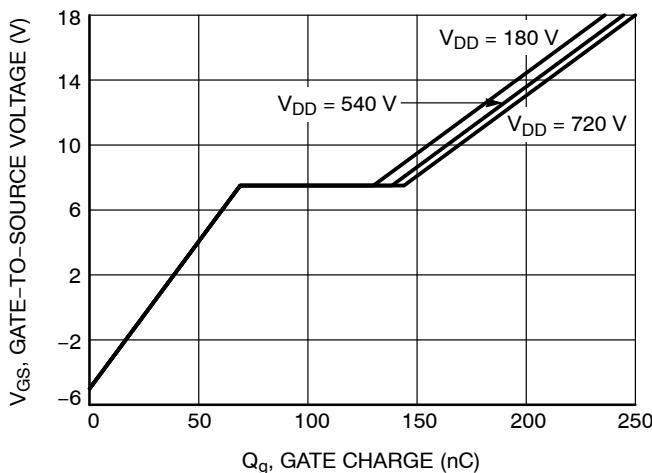


Figure 7. Gate-to-Source Voltage vs. Total Charge

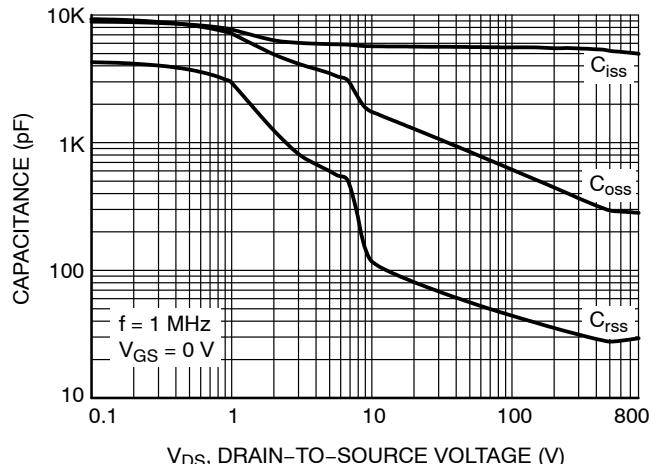


Figure 8. Capacitance vs. Drain-to-Source Voltage

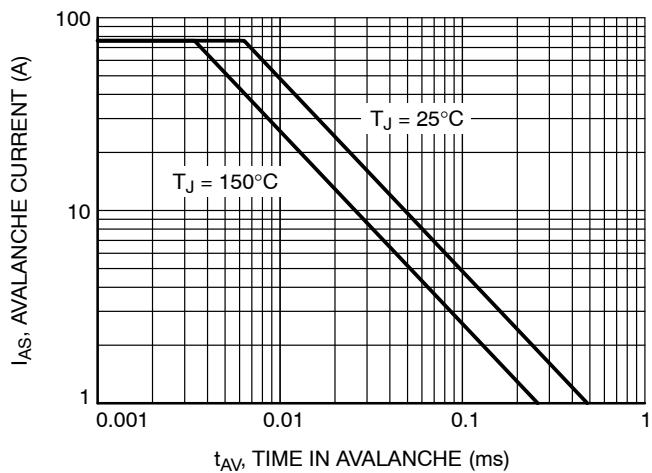


Figure 9. Unclamped Inductive Switching Capability

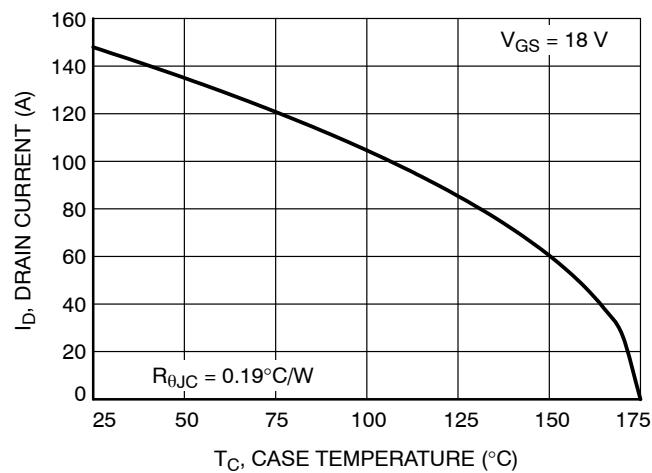


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

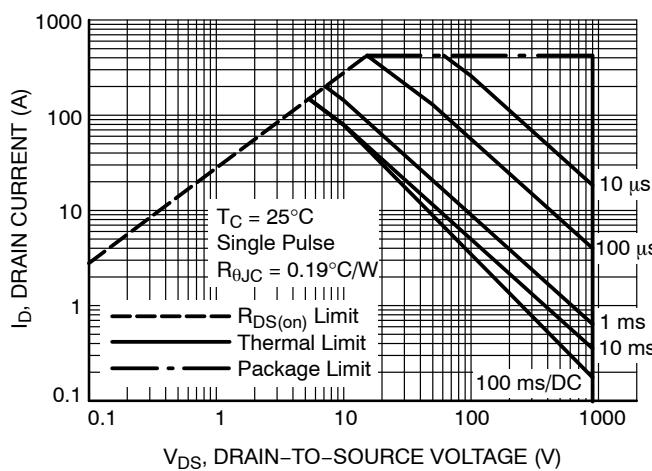


Figure 11. Safe Operating Area

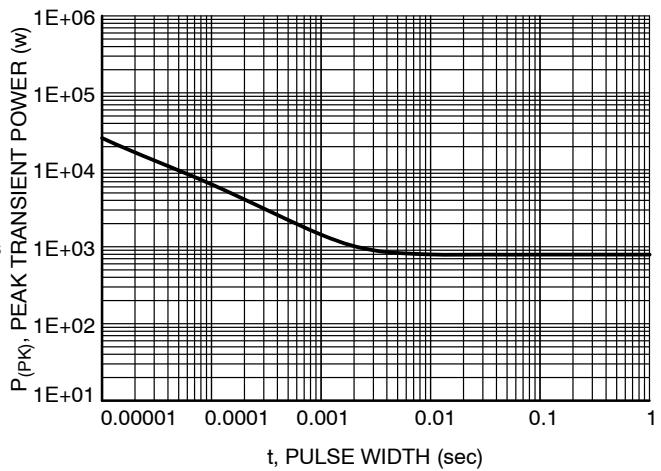


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS

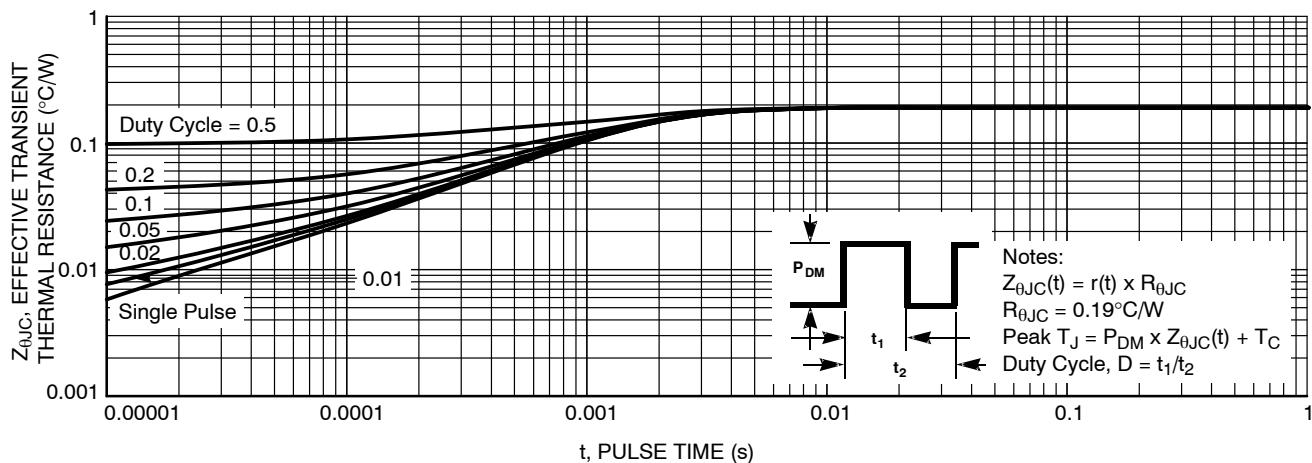
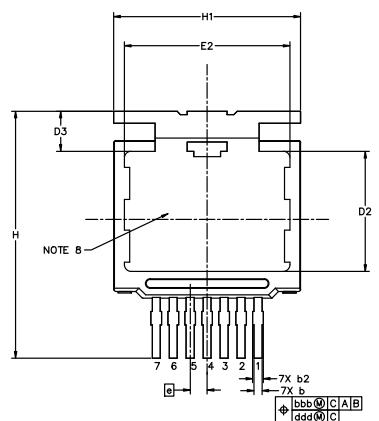


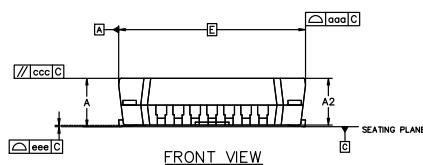
Figure 13. Junction-to-Case Transient Thermal Response Curve

REVISION HISTORY

Revision	Description of Changes	Date
0	Initial data sheet release	9/29/2025


This document has undergone updates prior to the inclusion of this revision history table. The changes tracked here only reflect updates made on the noted approval dates.

PACKAGE DIMENSIONS

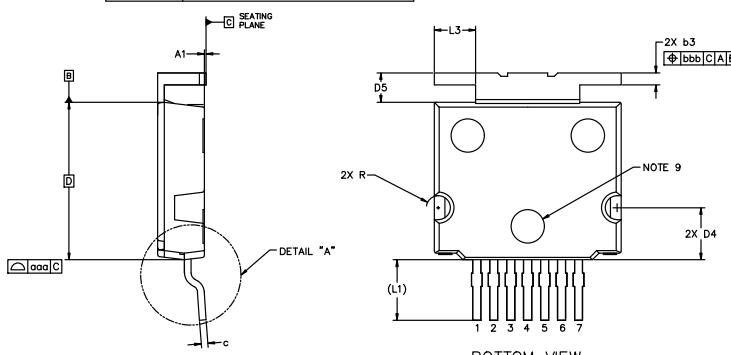

T2PAK-7 11.80x14.00x3.50, 1.27P
CASE 763AC
ISSUE A

NOTES:

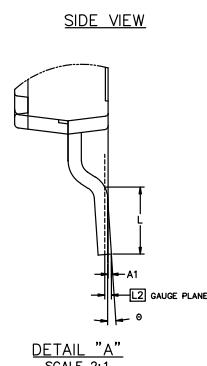
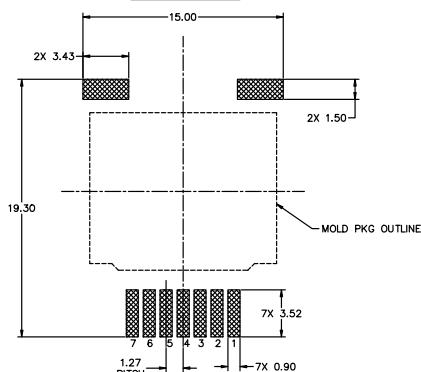
1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M, 2018.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSIONS b , b_2 , b_3 AND c TO BE MEASURED ON FLAT SECTION OF THE LEAD BETWEEN 0.13 AND 0.25mm FROM LEAD TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
5. POSITIONAL TOLERANCE APPLIES TO THE TERMINALS AND EXPOSED PAD.
6. A_1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.
7. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
8. ALLOWABLE ENCROACHED FLASH ON HEAT SINK AREA MAXIMUM OF 0.05mm.
9. EJECTOR PINS Ø12.5mm REF.

TOP VIEW

FRONT VIEW


END VIEW

MILLIMETERS			
DIM	MIN	NOM	MAX
A	3.53	3.63	3.73
A1	0.07	0.13	0.18
A2	3.40	3.50	3.60
b	0.50	0.60	0.70
b2	0.50	0.75	1.00
b3	0.80	0.90	1.00
c	0.40	0.50	0.60
c2	0.40	0.50	0.60
D	11.80 BSC		
D2	8.90	9.00	9.10
D3	3.00	3.10	3.20
D4	3.80	3.90	4.00
D5	2.10	2.20	2.30
E	14.00 BSC		
E2	12.30	12.40	12.50
e	1.27 BSC		



MILLIMETERS			
DIM	MIN	NOM	MAX
H	18.00	18.50	19.00
H1	13.80	14.00	14.20
L	2.42	2.52	2.62
L1	4.53 REF		
L2	0.25 BSC		
L3	3.00	3.10	3.20
R	0.80	---	1.00
θ	0°	---	8°
θ1	0°	---	8°

TOLERANCE FORM AND POSITION

aaa	0.10
bbb	0.10
ccc	0.10
ddd	0.05
eee	0.05

BOTTOM VIEW

DETAIL "A"
SCALE 2:1

RECOMMENDED MOUNTING FOOTPRINT

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

onsemi, **ONSEMI**, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "**onsemi**" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation
onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at
www.onsemi.com/support/sales