

Silicon Carbide (SiC) **MOSFET** - EliteSiC, 12.7 mohm, 650 V, M3S, T2PAK

NVT2012N065M3S

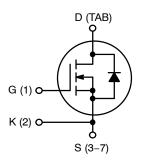
Features

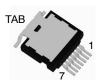
- Typ. $R_{DS(on)} = 12.7 \text{ m}\Omega$ @ $V_{GS} = 18 \text{ V}$
- Low Effective Output Capacitance
- Ultra Low Gate Charge
- 100% UIS Tested
- Qualified According to AECQ101
- RoHS Compliant

Applications

- Automotive On and Off Board Charger
- Automotive DC-DC Converter for EV-HEV

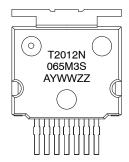
MAXIMUM RATINGS (T_J = 25 °C unless otherwise noted)


Parameter	Symbol	Value	Unit	
Drain-to-Source Voltage		V _{DSS}	650	V
Gate-to-Source Voltage	Gate-to-Source Voltage		-10/+22	V
Continuous Drain Current	T _C = 25 °C	I _D	112	Α
Power Dissipation		P_{D}	429	W
Continuous Drain Current	T _C = 100 °C	I _D	81	Α
Power Dissipation		P_{D}	214	W
Pulsed Drain Current (Note 1)	T_C = 25 °C t_p = 100 μ s	I _{DM}	237	Α
Continuous Source-Drain Current (Body Diode)	$T_C = 25 ^{\circ}C$ $V_{GS} = -3 ^{\circ}V$	I _S	64	Α
	$T_C = 100 ^{\circ}C$ $V_{GS} = -3 ^{\circ}V$		38	
Pulsed Source-Drain Current (Body Diode) (Note 1)	T_C = 25 °C V_{GS} = -3 V t_p = 100 μs	I _{SM}	259	Α
Single Pulse Avalanche Energy (I _{LPK} = 72 A, L = 0.1 mH) (Note 2)	E _{AS}	259	mJ	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to +175	°C
Lead Temperature for Soldering F (1/8" from case for 10 seconds)	urposes	TL	245	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Single pulse, limited by max junction temperature.
- 2. E_{AS} of 259 mJ is based on starting $T_J = 25$ °C, L = 0.1 mH, $I_{AS} = 72$ A, $V_{DD} = 100 \text{ V}, V_{GS} = 18 \text{ V}.$

V _{(BR)DSS}	R _{DS(ON)} TYP	I _D MAX
650 V	12.7 m Ω @ V _{GS} = 18 V	112 A


N-CHANNEL MOSFET

CASE 763AC

MARKING DIAGRAM

NVT2012N065M3S = Specific Device Code

= Assembly Site WW = Work Week Number

= Year of Production, Last Number

ZZ = Assembly Lot Number, Last Two Numbers

ORDERING INFORMATION

Device	Package	Shipping [†]
NVT2012N065M3S	T2PAK-7L	800 / Tape & Reel

† For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case (Note 3)	$R_{ heta JC}$	0.35	°C/W

^{3.} The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

RECOMMENDED OPERTATING CONDITIONS

Parameter		Value	Unit
Operation Values of Gate-to-Source Voltage	V_{GSop}	-3/+18	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS (T_J = 25 °C unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•				•	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 1 mA, T_J = 25 °C	650	-	_	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	ΔV _{(BR)DSS} / ΔΤ _J	I _D = 1 mA, Referenced to 25 °C (Note 5)	-	86	-	mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 650 V, T _J = 25 °C	-	-	10	μА
		V _{DS} = 650 V, T _J = 175 °C (Note 5)	=	-	500	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{GS} = -10 V, V _{DS} = 0 V	-1	-	-	μΑ
		V _{GS} = +22 V, V _{DS} = 0 V	-	-	1	
ON CHARACTERISTICS						
Drain-to-Source On Resistance	R _{DS(on)}	V_{GS} = 18 V, I_D = 40 A, T_J = 25 °C	-	12.7	16.8	mΩ
		V _{GS} = 18 V, I _D = 40 A, T _J = 175 °C (Note 5)	-	18	=	
		V _{GS} = 15 V, I _D = 40 A, T _J = 25 °C	-	15	-	
		V _{GS} = 15 V, I _D = 40 A, T _J = 175 °C (Note 5)	-	20	-	
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 20$ mA, $T_J = 25$ °C	2.0	2.7	4.0	V
Forward Transconductance	9 _{FS}	V _{DS} = 10 V, I _D = 40 A (Note 5)	-	26	-	S
CHARGES, CAPACITANCES & GATE R	ESISTANCE					
Input Capacitance	C _{ISS}	V _{DS} = 400 V, V _{GS} = 0 V, f = 1 MHz	-	3610	-	pF
Output Capacitance	C _{OSS}	(Note 5)	-	281	-	1
Reverse Transfer Capacitance	C _{RSS}		-	24	_	
Total Gate Charge	Q _{G(TOT)}	V _{DD} = 400 V, I _D = 40 A,	-	135	-	nC
Gate-to-Source Charge	Q _{GS}	V _{GS} = -3/18 V (Note 5)	-	35	-	
Gate-to-Drain Charge	Q_{GD}		-	29	_	
Gate Resistance	R _G	f = 1 MHz	_	1.6	_	Ω
SWITCHING CHARACTERISTICS						
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = -3/18 \text{ V}, I_D = 40 \text{ A},$	-	38	-	ns
Turn-Off Delay Time	t _{d(OFF)}	V_{DD} = 400 V, R _G = 4.7 Ω, L _{strav} = 13 nH, T _J = 25 °C	-	48	-	
Rise Time	t _r	(Notes 4, 5)	-	17.7	_	
Fall Time	t _f]	-	10.9	_	
Turn-On Switching Loss	E _{ON}]	-	179	_	μJ
Turn-Off Switching Loss	E _{OFF}		-	95	-	
Total Switching Loss	E _{TOT}]	_	274	_	

- 4. E_{ON}/E_{OFF} result is with body diode.
- 5. Defined by design, not subject to production test.

ELECTRICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise specified) (continued)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS				•	•	
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = -3/18 \text{ V}, I_D = 40 \text{ A},$	-	29	_	ns
Turn-Off Delay Time	t _{d(OFF)}	V _{DD} = 400 V, R _G = 4.7 Ω, L _{stray} = 13 nH, T _J = 175 °C (Notes 4, 5)	-	67	_	
Rise Time	t _r	(Notes 4, 5)	-	18	_	
Fall Time	t _f		-	12	_	
Turn-On Switching Loss	E _{ON}		-	178	_	μJ
Turn-Off Switching Loss	E _{OFF}		-	110	_	
Total Switching Loss	E _{TOT}		1	288	_	
SOURCE-TO-DRAIN DIODE CHARAC	TERISTICS					
Forward Diode Voltage	V _{SD}	I_{SD} = 40 A, V_{GS} = -3 V, T_{J} = 25 °C	-	4.5	6.0	V
		$I_{SD} = 40 \text{ A}, V_{GS} = -3 \text{ V}, T_{J} = 175 ^{\circ}\text{C}$ (Note 5)	-	4.2	-	
Reverse Recovery Time	t _{RR}	$V_{GS} = -3 \text{ V, } I_S = 40 \text{ A,}$	-	26	_	ns
Charge Time	ta	dl/dt = 1000 A/μs, V _{DS} = 400 V, T _J = 25 °C (Note 5)	1	15	_	
Discharge Time	t _b	,	1	11	_	
Reverse Recovery Charge	Q _{RR}	7	-	195	_	nC
Reverse Recovery Energy	E _{REC}	7	-	16	-	μJ
Peak Reverse Recovery Current	I _{RRM}	1	-	13	_	Α

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

E_{ON}/E_{OFF} result is with body diode.
 Defined by design, not subject to production test.

TYPICAL CHARACTERISTICS

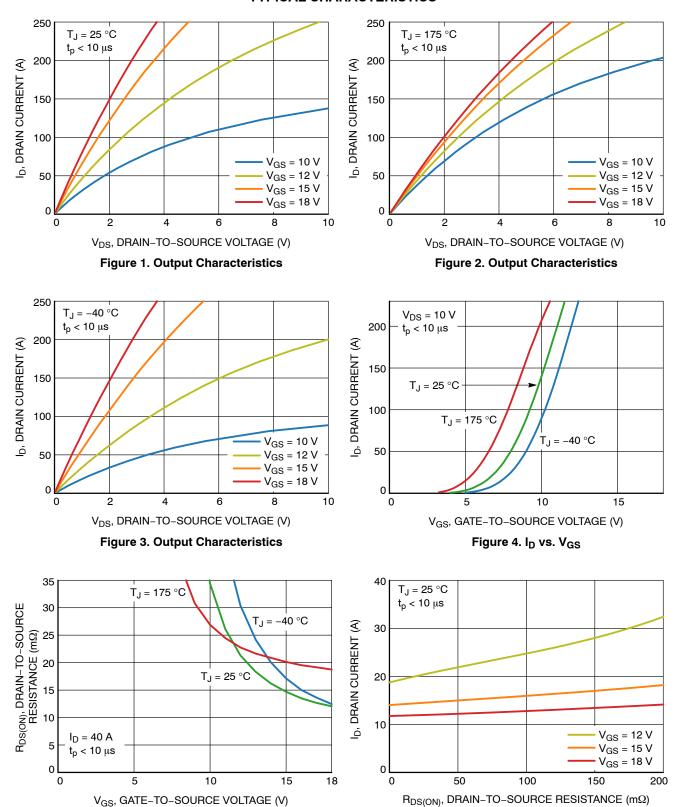


Figure 6. I_D vs. R_{DS(ON)}

Figure 5. R_{DS(ON)} vs. V_{GS}

TYPICAL CHARACTERISTICS

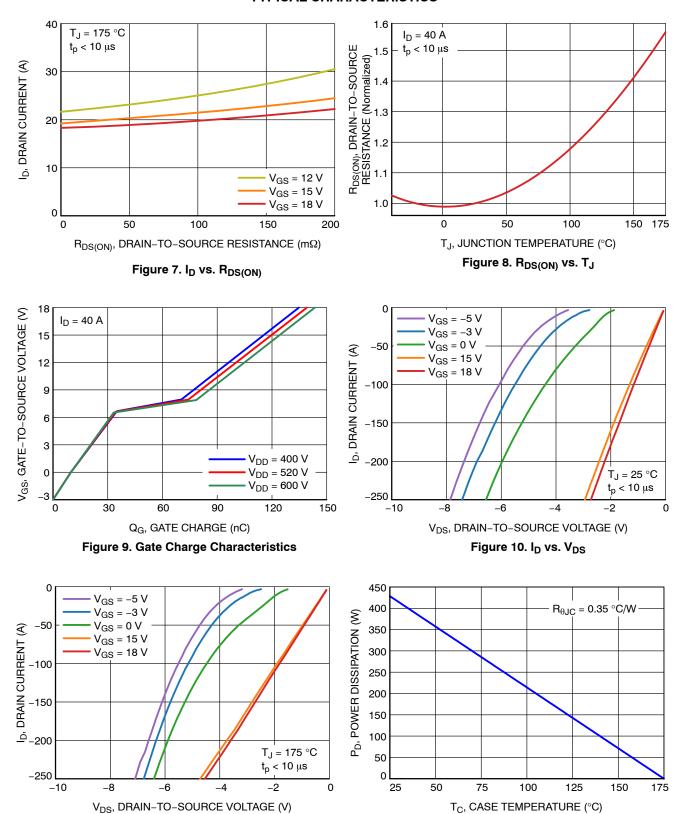
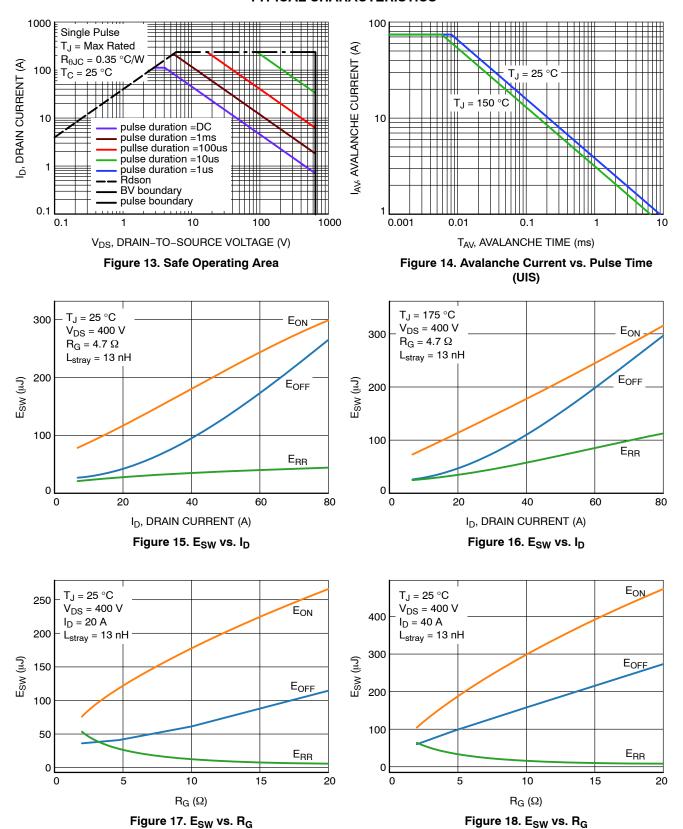



Figure 12. Maximum Power Dissipation vs.

Case Temperature

Figure 11. I_D vs. V_{DS}

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

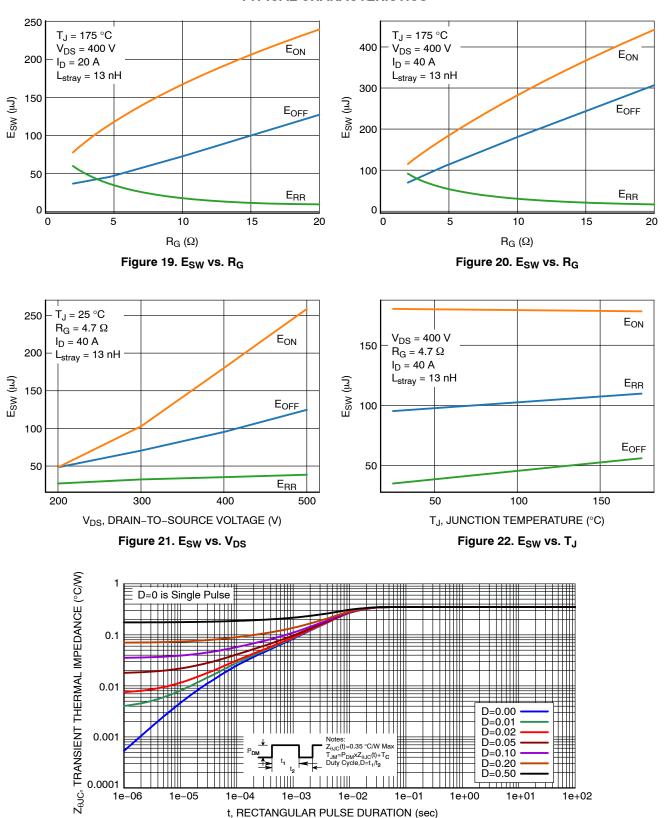


Figure 23. Transient Thermal Response

REVISION HISTORY

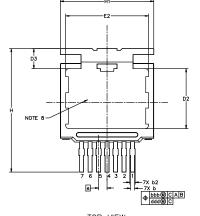
Revision	Description of Changes	Date
0	Initial data sheet release	9/29/2025
1	Figure 16 update	10/16/2025
2	Typ. R _{DS(on)} update in the Features section on the front page	10/29/2025

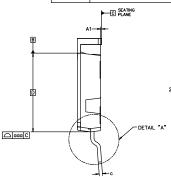
T2PAK-7 11.80x14.00x3.50, 1.27P

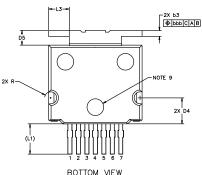
CASE 763AC **ISSUE A**

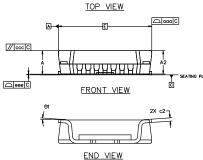
DATE 20 JUN 2025

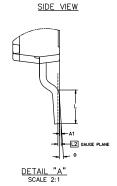
- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M,
- 2018.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSIONS b, b2, b3 AND c TO BE MEASURED ON
 FLAT SECTION OF THE LEAD BETWEEN 0.13 AND
 0.25mm FROM LEAD TIP.
 COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL
 AS THE TERMINALS.
 POSITIONAL TOLERANCE APPLIES TO THE TERMINALS
 AND EXPOSED PAD

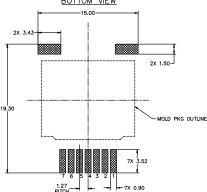

- AND EXPOSED PAD.
 A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE
 SEATING PLANE TO THE LOWEST POINT OF THE
 PACKAGE BODY.
- PALKAGE BOUY.


 DIMENSIONS D AND E ARE DETERMINED AT THE
 OUTERMOST EXTREMES OF THE PLASTIC BODY.


 ALLOWABLE ENCROACHED FLASH ON HEAT SINK AREA
 MAXIMUM OF 0.05mm.
- EJECTOR PINS Ø12.5mm REF.


MILLIMETERS					
DIM	MIN	NOM	MAX		
Α	3.53	3.63	3.73		
A1	0.07	0.13	0.18		
A2	3.40	3.50	3.60		
b	0.50	0.60	0.70		
b2	0.50	0.75	1.00		
b3	0.80	0.90	1.00		
С	0.40	0.50	0.60		
c2	0.40	0.50	0.60		
D		11.80 BSC			
D2	8.90	9.00	9.10		
D3	3.00	3.10	3.20		
D4	3.80	3.90	4.00		
D5	2.10	2.20	2.30		
Ε	14.00 BSC				
E2	12.30	12.40	12.50		
е	1.27 BSC				


MILLIMETERS						
DIM	MIN NOM MAX					
Н	18.00	18.50	19.00			
H1	13.80	14.00	14.20			
L	2.42	2.52	2.62			
L1		4.53 REF				
L2		0.25 BSC				
L3	3.00	3.10	3.20			
R	0.80		1.00			
Θ	0.		8.			
Θ1	0.		8.			
TOLER	ANCE FOR	M AND PO	SITION			
aaa		0.10				
bbb	0.10					
ccc	0.10					
ddd	0.05					
eee	0.05					



GENERIC MARKING DIAGRAM*

XXXXXX XXXXXX AYWWZZ logo

XXXX = Specific Device Code = Assembly Location

= Year WW = Work Week = Assembly Lot Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

RECOMMENDED MOUNTING FOOTPRINT

*For additional information on our Pb-Free strategy and soldering detais, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:

XXXXXXXXXXX

98AON60982H

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

DESCRIPTION:

T2PAK-7 11.80x14.00x3.50, 1.27P

PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales