

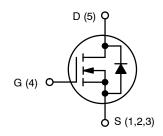
MOSFET - Power, Single N-Channel 60 V, 23.4 mΩ, 24.0 A NVMYS022N06C

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

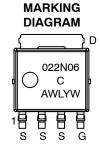
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	60	٧
Gate-to-Source Voltage	Э		V _{GS}	±20	V
Continuous Drain		T _C = 25°C	I _D	24.0	Α
Current R _{θJC} (Notes 1, 3)	Steady State	T _C = 100°C		16.9	
Power Dissipation R _{θJC} (Note 1)		T _C = 25°C	P_{D}	28.2	W
		T _C = 100°C		14.1	
Continuous Drain	Steady	T _A = 25°C	I _D	8.5	Α
Current R _{0JA} (Notes 1, 2, 3)		T _A = 100°C		6.0	
Power Dissipation	State	T _A = 25°C	P_{D}	3.6	W
R _{θJA} (Notes 1, 2)		T _A = 100°C		1.8	
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10 \mu s$		I _{DM}	113	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Source Current (Body Diode)			I _S	23.5	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 1.1 A)			E _{AS}	61	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State	$R_{\theta JC}$	5.3	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	42.2	

- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- 3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.


V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX	
60 V	23.4 m Ω @ 10 V	24.0 A	

N-CHANNEL MOSFET

LFPAK4 CASE 760AB

022N06C = Specific Device Code A = Assembly Location

WL =Wafer Lot Y = Year W = Work Week

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /				24		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25 °C			10	μΑ
		V _{DS} = 48 V	T _J = 125°C			250	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = 20 V				100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D}$	= 16 μΑ	2.0		4.0	V
Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-8.3		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 3 A		18.8	23.4	mΩ
CHARGES, CAPACITANCES & GATE RE	SISTANCE						
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 25 V			328		pF
Output Capacitance	C _{OSS}				239		
Reverse Transfer Capacitance	C _{RSS}				5		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 48 V; I _D = 3 A			4.7		nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 10 V, V _{DS} = 48 V; I _D = 3 A			0.9		
Gate-to-Source Charge	Q _{GS}				1.5		
Gate-to-Drain Charge	Q_{GD}				0.8		
Plateau Voltage	V_{GP}				4.5		V
SWITCHING CHARACTERISTICS (Note 4	-)						
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = 10 \text{ V}, V_{DS} = 48 \text{ V},$ $I_{D} = 3 \text{ A}, R_{G} = 2.5 \Omega$			6.4		ns
Rise Time	t _r				1.3		
Turn-Off Delay Time	t _{d(OFF)}				9.7		1
Fall Time	t _f				3.9		
DRAIN-SOURCE DIODE CHARACTERIS	TICS						
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	T _J = 25°C		0.81	1.2	V
		I _S = 3 A	T _J = 125°C		0.66		1
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } dI_{S}/dt = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 3 \text{ A}$			18.6		ns
Charge Time	ta				9.3		
Discharge Time	t _b				9.3		
Reverse Recovery Charge	Q _{RR}				6.3		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

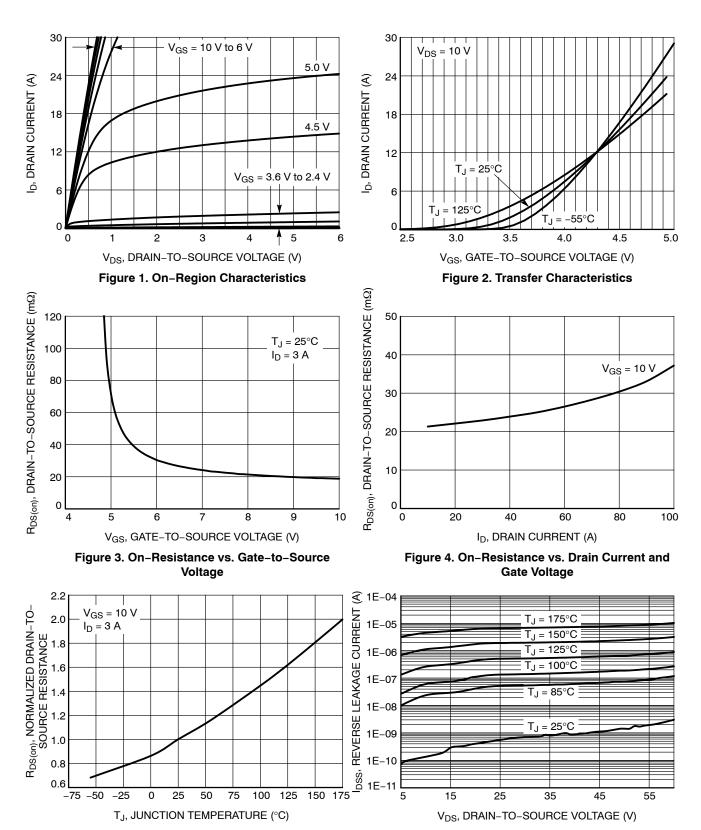


Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

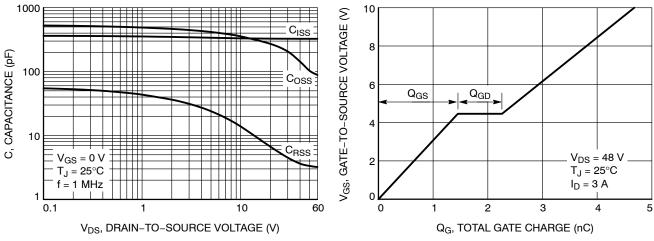


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source vs. Total Charge

1.4

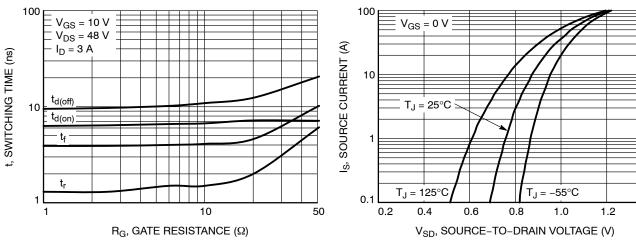


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

1000

 $T_C = 25^{\circ}C$

100 10 PEAK (A) $T_{J(initial)} = 25^{\circ}C$ T_{J(initial)} = 150°C 0.1 0.0001 0.001 0.01 TIME IN AVALANCHE (s)

Figure 10. Diode Forward Voltage vs. Current

Single Pulse $V_{GS} \le 10 \text{ V}$ ID, DRAIN CURRENT (A) 100 10 R_{DS(on)} Limit 0.5 ms Thermal Limit 1 ms Package Limit 10 ms

Figure 11. Maximum Rated Forward Biased Safe Operating Area

10 V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

100

Figure 12. Maximum Drain Current vs. Time in **Avalanche**

1000

TYPICAL CHARACTERISTICS

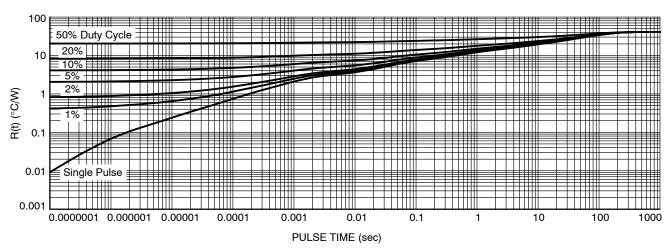
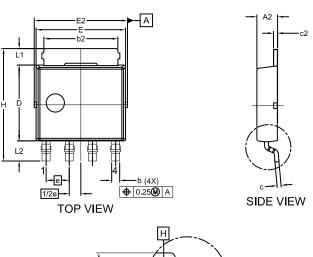
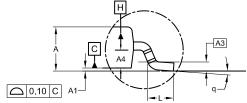
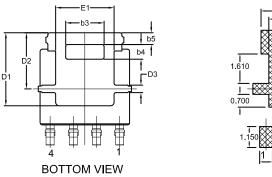


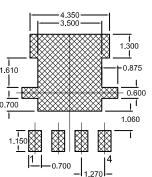
Figure 13. Transient Thermal Impedance


DEVICE ORDERING INFORMATION


Device	Marking	Package	Shipping [†]
NVMYS022N06CTWG	022N06C	LFPAK4 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


PACKAGE DIMENSIONS


LFPAK4 5x6 CASE 760AB ISSUE B

DETAIL 'A'

RECOMMENDED MOUNTING FOOTPRINT

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.150mm PER SIDE.
- 4. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 5. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

UNIT IN MILLIMETER				
DIM	MIN	NOM	MAX	
Α	1.10	1,20	1.30	
A1	0.00	0.08	0.15	
A2	1.10	1.15	1.20	
A3		0.25		
A4	0.45	0.50	0.55	
b	0.40	0.45	0.50	
b2	3.80	4.10	4.40	
b3	2.00	2.10	2.20	
b4	0.70	0.80	0.90	
b5	0.55	0.65	0.75	
O	0.19	0.22	0.25	
c2	0.19	0.22	0.25	
О	4.05	4.15	4.25	
D1	3.80	4.00	4.20	
D2	3.00	3.10	3.20	
D3	0.30	0.40	0.50	
Е	4.80	4.90	5.00	
E1	3.10	3.20	3.30	
E2	5.00	5.15	5.30	
е	1.27 BSC			
Η	6.00	6.15	6.30	
L L1	0.40	0.65	0.85	
	0.80	0.90	1.00	
L2	0.80	1.05	1.30	
q	0°	4°	8°	

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Sho

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative