

MOSFET - Power, Single N-Channel, STD Gate, TCPAK57

80 V, 2.1 mΩ, 334 A

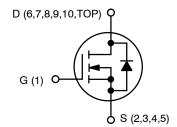
NVMJST2D1N08X

Features

- Low Q_{RR}, Soft Recovery Body Diode
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- AEC Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Synchronous Rectification (SR) in DC-DC and AC-DC
- Primary Switch in Isolated DC-DC Converter
- Motor Drives
- Automotive 48 V System


MAXIMUM RATINGS (T_J = 25 °C unless otherwise noted)

Parameter	Symbol	Value	Unit	
Drain-to-Source Voltage	V _{DSS}	80	V	
Gate-to-Source Voltage		V _{GS}	±20	V
Continuous Drain Current	T _C = 25 °C	I _D	334	Α
	T _C = 100 °C		236	
Power Dissipation	P _D	454	W	
Pulsed Drain Current $ T_{C} = 25 ^{\circ}C, \\ t_{p} = 100 \mu s $		I _{DM}	799	Α
Operating Junction and Storage Range	T _J , T _{stg}	-55 to +175	°C	
		I _S	467	Α
Single Pulse Avalanche Energy (E _{AS}	231	mJ	
Lead Temperature for Soldering (1/8" from case for 10 s)	TL	260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Surface-mounted on FR4 board using a 1 in², 1 oz. Cu pad
- 2. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted. 3. E_{AS} is based on started $T_J = 25$ °C, rated I_{AS} , $V_{DD} = 64$ V, $V_{GS} = 10$ V,
- 100% avalanche tested.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
80 V	2.1 m Ω @ V_{GS} = 10 V	334 A

N-CHANNEL MOSFET

TCPAK57 CASE 760AG

MARKING DIAGRAM

XXXX = Specific Device Code = Assembly Location

= Year

W = Work Week

= Assembly Lot Code

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 6 of this data sheet.

THERMAL CHARACTERISTICS

Parameter		Value	Unit
Thermal Resistance, Junction-to-Case (Top)		0.33	°C/W
Thermal Resistance, Junction-to-Ambient		44]
Thermal Characterization Parameter, Junction-to-Source Lead (Pin 2-5)*		6.5]
Thermal Characterization Parameter, Junction-to-Drain Lead (Pin 6–10)*	$\Psi_{\sf JL}$	11.9	

^{*} Low thermal conductivity test boards compliant with JEDEC Standard 51–3 for leaded surface–mount packages. 1s0p PCB board with a 1in² copper plane, tested under natural convection conditions.

ELECTRICAL CHARACTERISTICS (T₁ = 25 °C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS						•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 1 mA, T _J = 25 °C 80				V
Drain-to-Source Breakdown Voltage Temperature Coefficient	ΔV _{(BR)DSS} / ΔT _J	I _D = 1 mA, Referenced to 25 °C		32		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 80 V, T _J = 25 °C			1.0	μΑ
		V _{DS} = 80 V, T _J = 125 °C			250	
Gate-to-Source Leakage Current	I _{GSS}	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
ON CHARACTERISTICS						
Drain-to-Source On Resistance	R _{DS(ON)}	V _{GS} = 10 V, I _D = 30 A, T _J = 25 °C		1.9	2.1	mΩ
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 252 \mu A$, $T_J = 25 ^{\circ} C$	2.4		3.6	٧
Gate Threshold Voltage Temperature Coefficient	$\Delta V_{GS(TH)}/\Delta T_J$	$V_{GS} = V_{DS}, I_D = 252 \mu A$		-8.3		mV/°C
Forward Transconductance	9FS	V _{DS} = 5 V, I _D = 30 A		116		S
CHARGES, CAPACITANCES & GATE	RESISTANCE					
Input Capacitance	C _{ISS}			4380		pF
Output Capacitance	C _{OSS}			1261		
Reverse Transfer Capacitance	C _{RSS}	$V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		19		
Output Charge	Q _{OSS}			90		nC
Total Gate Charge	Q _{G(TOT)}			62		
Threshold Gate Charge	Q _{G(TH)}			14		
Gate-to-Source Charge	Q_{GS}	$V_{DD} = 40 \text{ V}, I_{D} = 30 \text{ A}, V_{GS} = 10 \text{ V}$		20		
Gate-to-Drain Charge	Q_{GD}	us us		9.6		
Gate Plateau Voltage	V_{GP}			4.6		٧
Gate Resistance	R_{G}	f = 1 MHz		0.65		Ω
SWITCHING CHARACTERISTICS						
Turn-On Delay Time	t _{d(ON)}			28		ns
Rise Time	t _r	Resistive Load		8.2		
Turn-Off Delay Time	t _{d(OFF)}	$V_{GS} = 0/10 \text{ V}, V_{DD} = 64 \text{ V},$ $I_D = 30 \text{ A}, R_G = 2.5 \Omega$		44		7
Fall Time	t _f			6.8		
SOURCE-TO-DRAIN DIODE CHARAC	TERISTICS			•	•	•
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 30 A, T _J = 25 °C		0.80	1.2	٧
		V _{GS} = 0 V, I _S = 30 A, T _J = 125 °C		0.64		

ELECTRICAL CHARACTERISTICS (T_J = 25 °C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
SOURCE-TO-DRAIN DIODE CHARACTERISTICS						
Reverse Recovery Time	t _{RR}			25		ns
Charge Time	ta	V _{GS} = 0 V, I _S = 30 A,		14		
Discharge Time	t _b	dl/dt = 1000 A/μs, V _{DD} = 64 V		11		
Reverse Recovery Charge	Q _{RR}			192		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

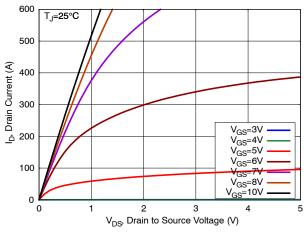


Figure 1. On-Region Characteristics

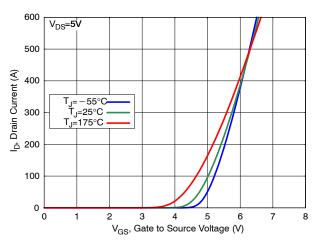


Figure 2. Transfer Characteristics

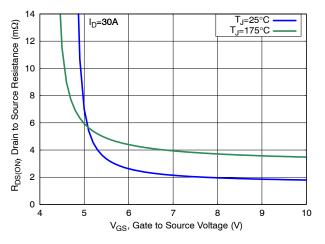


Figure 3. On-Resistance vs. Gate Voltage

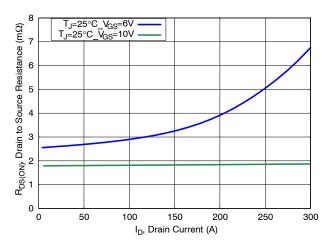


Figure 4. On-Resistance vs. Drain Current

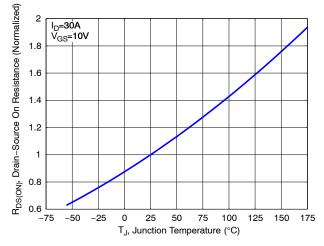


Figure 5. Normalized ON Resistance vs. Junction Temperature

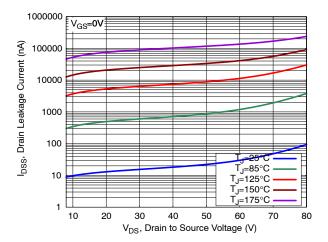


Figure 6. Drain Leakage Current vs. Drain Voltage

TYPICAL CHARACTERISTICS

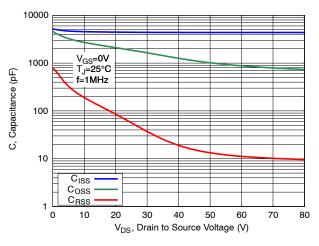


Figure 7. Capacitance Characteristics

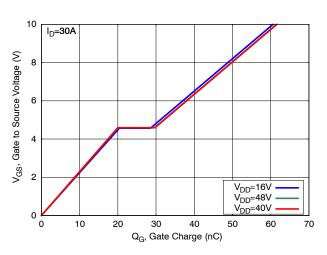


Figure 8. Gate Charge Characteristics

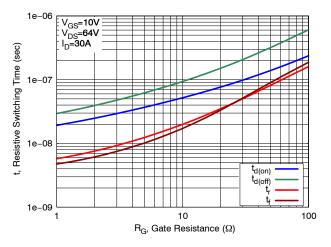


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

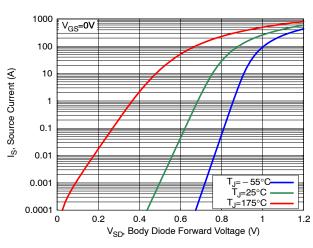


Figure 10. Diode Forward Characteristics

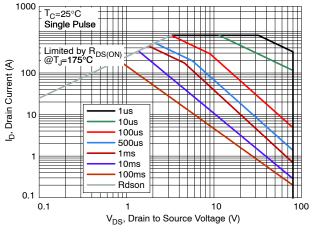


Figure 11. Safe Operating Area (SOA)

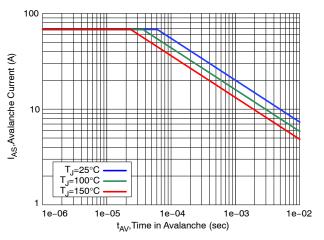
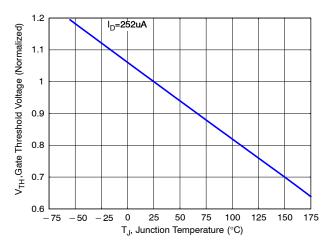



Figure 12. Avalanche Current vs. Pulse Time (UIS)

TYPICAL CHARACTERISTICS

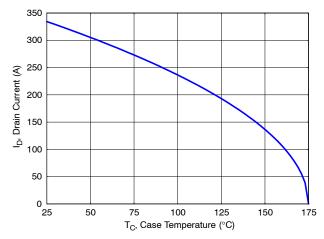


Figure 13. Gate Threshold Voltage vs. Junction Temperature

Figure 14. Maximum Current vs. Case Temperature

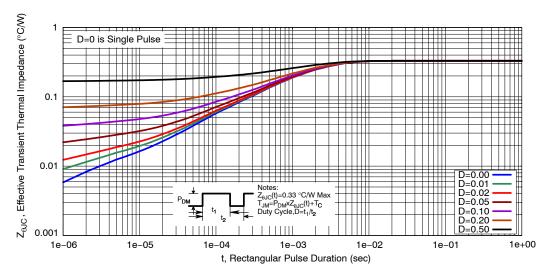


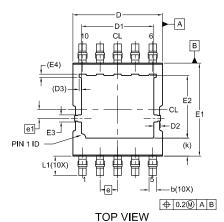
Figure 15. Transient Thermal Response

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NVMJST2D1N08XTXG	2D18	TCPAK57 Top Cool (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

REVISION HISTORY

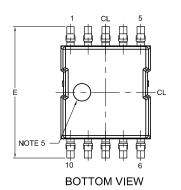

Revision	Description of Changes	Date
P1	Update of thermal resistance and corresponding revision of maximum current, along with updates to the FBSOA and UIS curves.	9/19/2025
0	Release of datasheet with final marking and thermal characteristic values.	10/2/2025

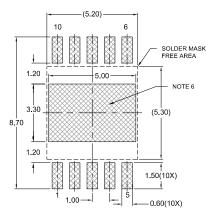
This document has undergone updates prior to the inclusion of this revision history table. The changes tracked here only reflect updates made on the noted approval dates.

PACKAGE DIMENSIONS

TCPAK10 5.1x7.5, 1.0P

CASE 760AG ISSUE D

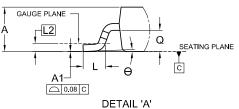



(E5)
FLAT
SURFACE
SEE DETAIL 'A'

SIDE VIEW

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. UNIT DIMENSION: MILLIMETERS
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.150mm PER SIDE.
- DIMENSIONS D AND E1 ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 5. OPTIONAL MOLD FEATURE.
- LAND PAD UNDER THE PACKAGE BODY IS FOR MECHANICAL SUPPORT ONLY, SOLDER CONNECTION IS NOT REQUIRED.
 - DIMENSION A1 IS THE LEAD STAND-OFF FROM THE BOTTOM SURFACE OF THE PACKAGE BODY.



LAND PAD RECOMMENDATION

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

MILLIMETERS					
DIM	MIN	NOM	MAX		
Α	1.30	1.35	1.45		
A1	-0.05	0.00	0.05		
A2	1.30	1.35	1.40		
b	0.36	0.41	0.46		
С	0.16	0.21	0.26		
D	5.00	5.10	5.20		
D1	4.02	4.12	4.22		
D2	0.30	0.40	0.50		
D3	0.14 REF				
Е	7.40	7.50	7.60		
E1	5.20	5.30	5.40		
E2	3.47	3.57	3.67		
E3	0.30	0.40	0.50		
E4	0	17 REF			
E5	4	.82 REF			
е	1.	.00 BSC			
e1	0.	0.50 BSC			
k	1.03 REF				
L	0.49	0.69	0.89		
L1	0.90	1.10	1.30		
L2	0.25 BSC				
Q	0.60	0.65	0.70		
θ	0°	2.5°	5°		

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales