

MOSFET - Power, Single N-Channel, STD Gate, SO8-FL

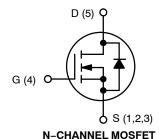
40 V, 0.52 mΩ, 414 A

NVMFWS0D5N04XM

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Small Footprint (5 x 6 mm) with Compact Design
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

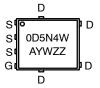
Applications


- Motor Drive
- Battery Protection
- Synchronous Rectification

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter		Symbol	Value	Unit
Drain-to-Source Voltage		V _{DSS}	40	V
Gate-to-Source Voltage		V _{GS}	±20	V
Continuous Drain Current	tinuous Drain Current T _C = 25°C		414	Α
	T _C = 100°C		293	
Power Dissipation	T _C = 25°C	P_{D}	163	W
Pulsed Drain Current	T _C = 25°C,	I _{DM}	900	Α
Pulsed Source Current (Body Diode)	t _p = 10 μs	I _{SM}	900	
Operating Junction and Storage Temperature Range		T _J , T _{STG}	-55 to +175	°C
Source Current (Body Diode)		Is	251	Α
Single Pulse Avalanche Energy	I _{PK} = 28.2 A	E _{AS}	1434	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
40 V	0.52 mΩ @ 10 V	414 A

DFNW5 (SO-8FL WF) CASE 507BD

MARKING DIAGRAM

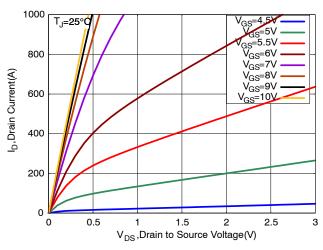
A = Assembly Location
Y = Year
W = Work Week
ZZ = Lot Traceability

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

THERMAL CHARACTERISTICS

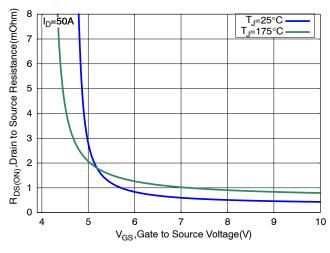
Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case (Note 2)		0.92	°C/W
Thermal Resistance, Junction-to-Ambient (Notes 1, 2)	$R_{\theta JA}$	38.9	


^{1.} Surface-mounted on FR4 board using 650 mm² pad, 2 oz Cu pad.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•					•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}, T_J = 25^{\circ}\text{C}$	40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	ΔV _{(BR)DSS} /ΔT _J	I _D = 1 mA, Referenced to 25°C		15		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 40 V, T _J = 25°C			1	μΑ
		V _{DS} = 40 V, T _J = 125°C			60	
Gate-to-Source Leakage Current	I _{GSS}	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
ON CHARACTERISTICS						
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 50 \text{ A}, T_J = 25^{\circ}\text{C}$		0.43	0.52	mΩ
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 240 \mu A, T_J = 25^{\circ}C$	2.5	3.0	3.5	V
Gate Threshold Voltage Temperature Coefficient	ΔV _{GS(TH)} /ΔT _J	$V_{GS} = V_{DS}, I_{D} = 240 \mu\text{A}$		-7.21		mV/°C
Forward Trans-conductance	9FS	V _{DS} = 5 V, I _D = 50 A		267		S
CHARGES, CAPACITANCES & GATE RE	SISTANCE					
Input Capacitance	C _{ISS}	V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz		6232		pF
Output Capacitance	C _{OSS}			3987		
Reverse Transfer Capacitance	C _{RSS}			53.9		
Total Gate Charge	Q _{G(TOT)}	$V_{DD} = 32 \text{ V}, I_D = 50 \text{ A}, V_{GS} = 6 \text{ V}$		60.5		nC
Total Gate Charge	Q _{G(TOT)}	$V_{DD} = 32 \text{ V}, I_D = 50 \text{ A}, V_{GS} = 10 \text{ V}$		97.9		
Threshold Gate Charge	Q _{G(TH)}			18.2		
Gate-to-Source Charge	Q _{GS}			27.4		
Gate-to-Drain Charge	Q_{GD}			18.5		
Gate Resistance	R_{G}	f = 1 MHz		0.47		Ω
SWITCHING CHARACTERISTICS						
Turn-On Delay Time	t _{d(ON)}	Resistive Load, V _{GS} = 0/10 V,		8.64		ns
Rise Time	t _r	$V_{DD} = 32 \text{ V}, I_D = 50 \text{ A}, R_G = 0 \Omega$		7.02		
Turn-Off Delay Time	t _{d(OFF)}			13.7		
Fall Time	t _f			6.85		
SOURCE-TO-DRAIN DIODE CHARACTE	RISTICS					
Forward Diode Voltage	V_{SD}	$I_S = 50 \text{ A}, V_{GS} = 0 \text{ V}, T_J = 25^{\circ}\text{C}$		0.8	1.2	V
		I _S = 50 A, V _{GS} = 0 V, T _J = 125°C		0.65		1
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } I_{S} = 50 \text{ A,}$		101		ns
Charge Time	ta	dI/dt = 100 A/μs, V _{DD} = 32 V		56.9		
Discharge Time	t _b			44.8		1
Reverse Recovery Charge	Q _{RR}	1		286		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.


TYPICAL CHARACTERISTICS

1000 $V_{DS} = 5\dot{V}$ 900 800 I_D, Drain Current(A) 700 600 500 400 300 200 T_{J=-55°C}-T_{J=25°C}-100 T_{.I}=175°C 0 3 6 V_{GS},Gate to Source Voltage(V)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

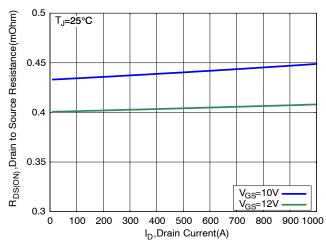
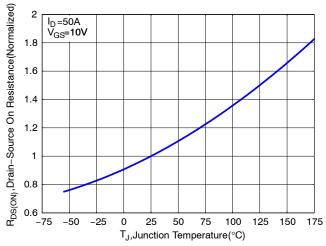



Figure 3. On-Resistance vs. Gate Voltage

Figure 4. On-Resistance vs. Drain Current

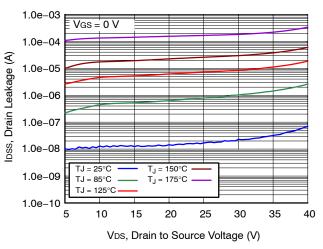


Figure 6. Drain Leakage vs. Drain to Source Voltage

TYPICAL CHARACTERISTICS (continued)

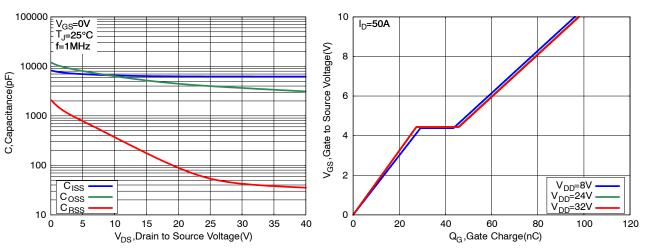


Figure 7. Capacitance Characteristics

Figure 8. Gate Charge Characteristics

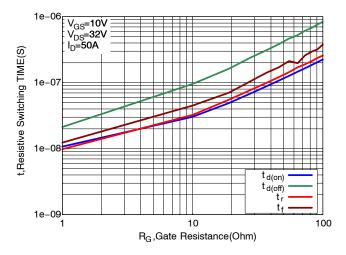


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

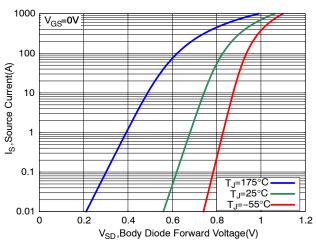


Figure 10. Diode Forward Characteristics

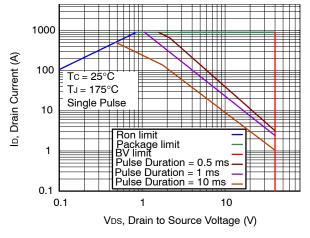


Figure 11. Maximum Rated Forward Biased Safe Operating Area

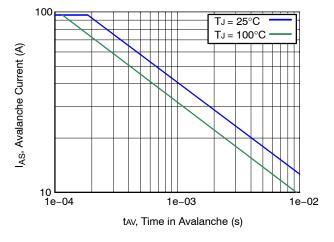


Figure 12. Ipeak vs. Time in Avalanche

TYPICAL CHARACTERISTICS (continued)

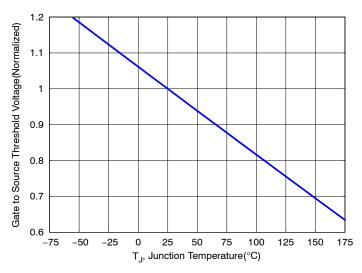


Figure 13. Gate Threshold Voltage vs. Junction Temperature

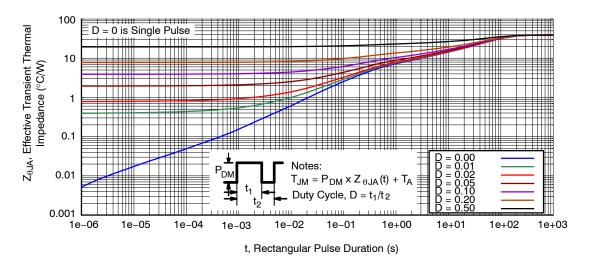
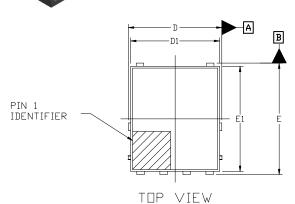
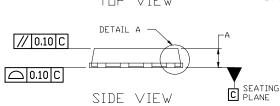


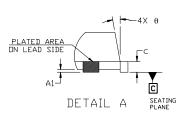
Figure 14. Thermal Characteristics

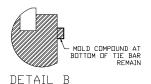
DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NVMFWS0D5N04XMT1G	0D5N4W	DFNW5 (Pb-Free)	1500 / Tape & Reel

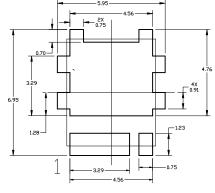

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.




DFNW5 5x6, FULL-CUT SO8FL WF


CASE 507BD ISSUE O

DATE 13 APR 2021



NOTES

- TES:
 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
 CONTROLLING DIMENSION: MILLIMETERS
 DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH,
 PROTRUSIONS, OR GATE BURRS.
 THIS PACKAGE CONTAINS WETTABLE FLANK DESIGN
 FEATURES TO AID IN FILLET FORMATION ON THE LEADS
 DURING MOUNTING.

	MILLIMETERS			
DIM	MIN.	N□M.	MAX.	
А	0.90	1.00	1.10	
A1	0.00		0.05	
b	0.33	0.41	0.51	
C	0.23	0.28	0.33	
D	5.00	5.15	5.30	
D1	4.80	5.00	5.20	
D2	3.90	4.10	4.30	
E	6.00	6.15	6.30	
E1	5.70	5.90	6.10	
E2	3.55	3.75	3,95	
е		1.27 BSC	;	
G	0.50	0.55	0.70	
G1	0.26	0.36	0.46	
k	1.10	1.25	1.40	
L	0.50	0.60	0.70	
L1	0.150 REF			
М	3.00	3.40	3.80	
θ	0°		12°	

RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SBLDERRM/D.

8X b- 	e e
G1	1 DETAIL
PIN 5 E2 (EXPOSED PAD)	D2 L1
	BOTTOM VIEW

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code

Α = Assembly Location

Υ = Year

W = Work Week

ΖZ = Assembly Lot *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may

not follow the Generic Marking.

В

DOCI	IMENT	NUMBER:	.
	JIVIENI	NUMBER.	.

98AON31027H

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

DESCRIPTION:

DFNW5 5x6, FULL-CUT SO8FL WF

PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales