onsemi

MOSFET - Power, Single N-Channel 100 V, 2.8 mΩ, 177 A NVMFWS002N10MCL

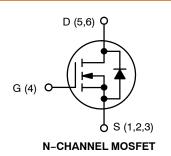
Features

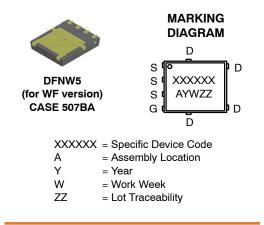
- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free, Beryllium Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	100	V
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain Current $R_{\theta JC}$ (Note 1)	Steady State	T _C = 25°C	I _D	177	А
		T _C = 100°C		125	
Power Dissipation $R_{\theta JC}$ (Note 1)		T _C = 25°C	PD	194	W
		$T_{C} = 100^{\circ}C$		97	
Continuous Drain		$T_A = 25^{\circ}C$	I _D	25	А
Current R _{θJA} (Notes 1, 2)	Steady	T _A = 100°C		18	
Power Dissipation	State	$T_A = 25^{\circ}C$	PD	3.8	W
$R_{\theta JA}$ (Notes 1, 2)		$T_A = 100^{\circ}C$		1.9	
Pulsed Drain Current	$T_A = 25^\circ C$, $t_p = 10 \ \mu s$		I _{DM}	900	А
Operating Junction and Storage Temperature Range			T _J , T _{stg}	–55 to +175	°C
Source Current (Body Diode)		۱ _S	149	А	
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 11.9 A)		E _{AS}	1338	mJ	
Lead Temperature Soldering Reflow for Solder- ing Purposes (1/8" from case for 10 s)		ΤL	260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


THERMAL RESISTANCE RATINGS


Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Note 1)	$R_{\theta JC}$	0.77	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	39	

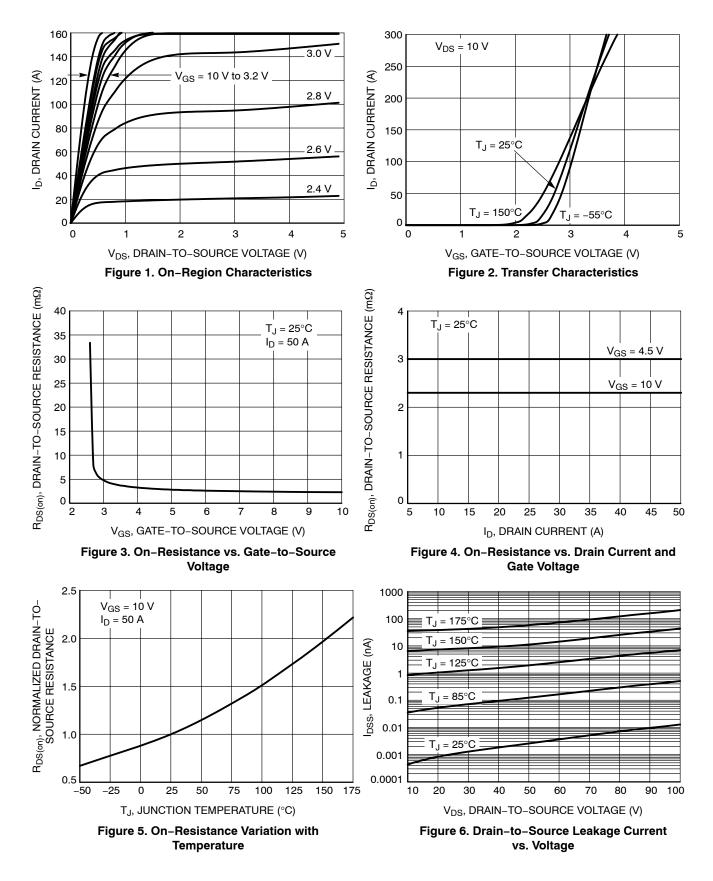
 The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

2. Surface-mounted on FR4 board using 1 in² pad size, 2 oz. Cu pad.

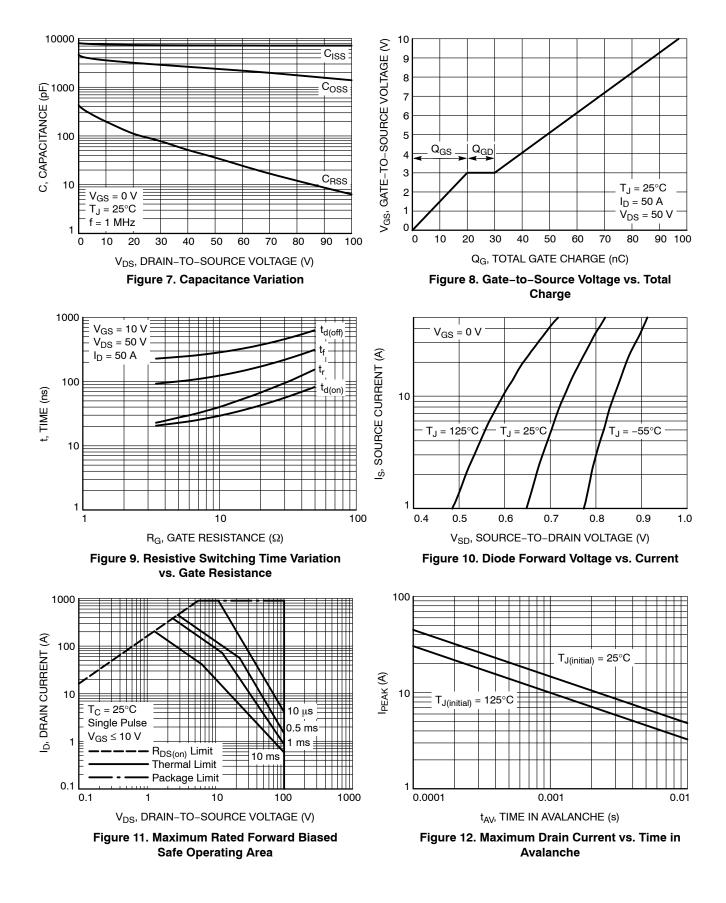
V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
100 V	2.8 mΩ @ 10 V	177 A
	3.8 mΩ @ 4.5 V	177 A

ORDERING INFORMATION

Device	Package	Shipping†		
NVMFWS002N10MCLT1G (Wettable Flanks)	DFN5 (Pb-Free)	1500 / Tape & Reel		


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS					•		
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V, I_D =$	= 250 μA	100			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	I _D = 250 μA, ref to 25°C			70		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 100 V	$T_J = 25^{\circ}C$			1	μA
			T _J = 125°C			100	1
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _G	_S = 20 V			100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I _D	= 351 μA	1		3	V
Threshold Temperature Coefficient	V _{GS(TH)} /T _J	I _D = 250 μA, ref to 25°C			-5.7		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I	_D = 50 A		2.3	2.8	mΩ
		V _{GS} = 4.5 V, I _D = 50 A			3.0	3.8	
Forward Transconductance	9 _{FS}	V _{DS} = 10 V, I _D = 50 A			200		S
Gate-Resistance	R _G	T _A = 25°C			0.40		Ω
CHARGES & CAPACITANCES							
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 50 V			7200		pF
Output Capacitance	C _{OSS}				2400		
Reverse Transfer Capacitance	C _{RSS}				36		
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 4.5 V, V_{DS} = 50 V, I_{D} = 50 A			45		nC
Total Gate Charge	Q _{G(TOT)}				97		-
Threshold Gate Charge	Q _{G(TH)}	V_{GS} = 10 V, V_{DS} = 50 V, I_{D} = 50 A			11		
Gate-to-Source Charge	Q _{GS}				20		
Gate-to-Drain Charge	Q _{GD}				10		
Plateau Voltage	V _{GP}				3		V
SWITCHING CHARACTERISTICS (Note :	3)						
Turn–On Delay Time	t _{d(ON)}	V_{GS} = 10 V, V_{DS} = 50 V, I_{D} = 50 A, R_{G} = 6 Ω			24		ns
Rise Time	t _r				30		
Turn-Off Delay Time	t _{d(OFF)}				250		
Fall Time	t _f				105		
DRAIN-SOURCE DIODE CHARACTERIS	STICS				<u> </u>		
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 50 A	$T_J = 25^{\circ}C$		0.83	1.3	V
			T _J = 125°C		0.71		
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dI _S /dt = 100 A/µs, I _S = 31 A			73		ns
Reverse Recovery Charge	Q _{RR}				93		nC
Charge Time	t _a				35		ns
Discharge Time	t _b				38		ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.3. Switching characteristics are independent of operating junction temperatures

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

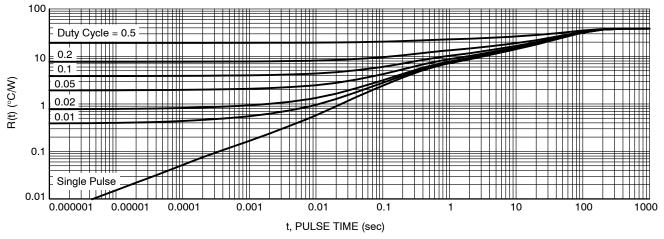
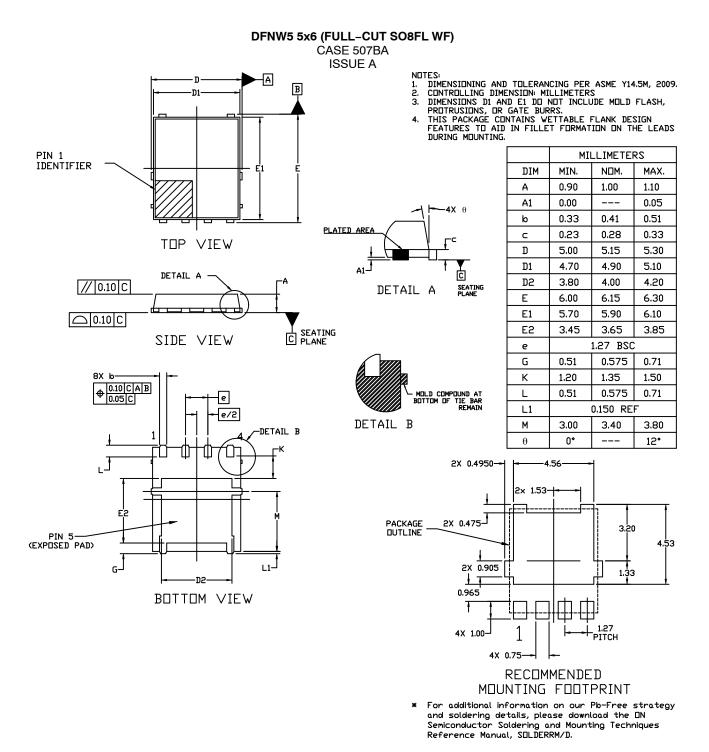



Figure 13. Transient Thermal Impedance

PACKAGE DIMENSIONS

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdfi/Patent-Marking.pdf</u>. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** pro

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative