

MOSFET – Power, Single N-Channel

40 V, 4.2 mΩ, 120 A NVMFS5832NL

Features

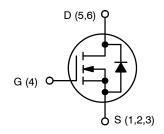
- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- NVMFS5832NLWF Wettable Flanks Product
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25 °C unless otherwise noted)

Symbol	Parameter			Value	Unit
V _{DSS}	Drain-to-Source Voltage			40	V
V _{GS}	Gate-to-Source Voltag	ge		±20	V
I _D	Continuous Drain		T _{mb} = 25 °C	120	Α
	Current R _{ΨJ-mb} (Notes 1, 2, 3, 4)	Steady	T _{mb} = 100 °C	84	
P_{D}	Power Dissipation	State	T _{mb} = 25 °C	127	W
	R _{ΨJ-mb} (Notes 1, 2, 3)		T _{mb} = 100 °C	64	
I _D	Continuous Drain		T _A = 25 °C	21	Α
	Current $R_{\theta JA}$ (Notes 1, 3, 4)	Steady	T _A = 100 °C	15	
P_{D}	Power Dissipation	State	T _A = 25 °C	3.7	W
	R _{θJA} (Notes 1 & 3)		T _A = 100 °C	1.9	
I _{DM}	Pulsed Drain Current	T _A = 25	$^{\circ}$ C, t_p = 10 μ s	557	Α
T _J , T _{stg}	Operating Junction and Storage Temperature			-55 to +175	°C
I _S	Source Current (Body Diode)			120	Α
E _{AS}	Single Pulse Drain-to-Source Avalanche Energy (T_J = 25 °C, V_{GS} = 10 V, $I_{L(pk)}$ = 52 A, L = 0.1 mH, R_G = 25 Ω)			134	mJ
TL	Lead Temperature for (1/8" from case for 10		Purposes	260	°C

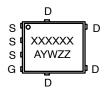
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS


Symbol	Parameter	Value	Unit
R _{ΨJ-mb}	Junction-to-Mounting Board (top) - Steady State (Notes 2, 3)	1.2	°C/W
$R_{\theta JA}$	Junction-to-Ambient - Steady State (Note 3)	40	

- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- Psi (Ψ) is used as required per JÉSD51-12 for packages in which substantially less than 100% of the heat flows to single case surface.
- 3. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- 4. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX	
40 V	4.2 mΩ @ 10 V	120 A	
40 V	6.5 mΩ @ 4.5 V		



DFNW5 CASE 507BA

N-CHANNEL MOSFET

MARKING DIAGRAM

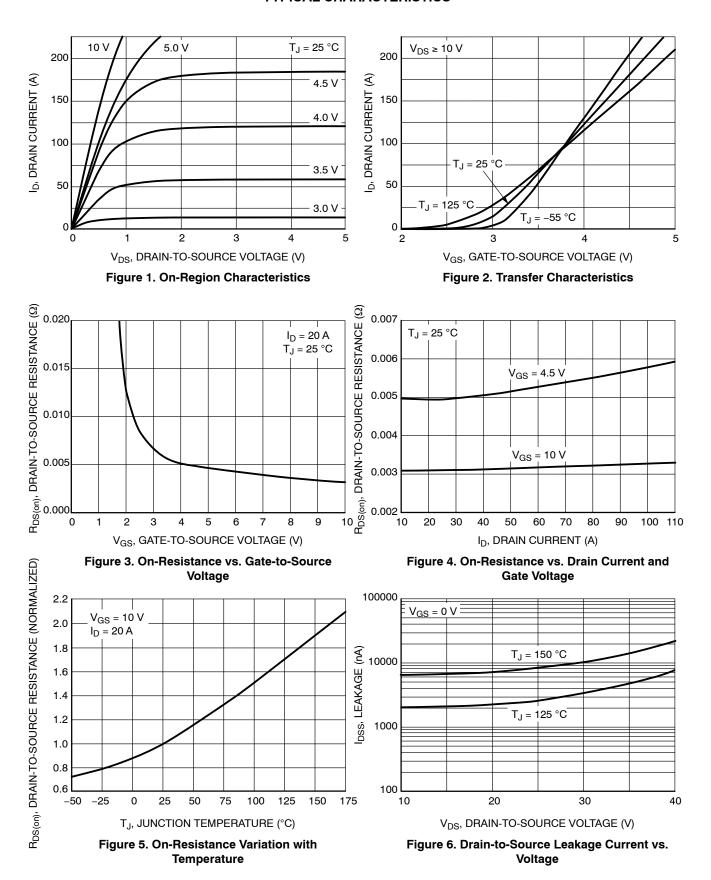
A = Assembly Location

Y = Year
W = Work Week
ZZ = Lot Traceability

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 5.


ELECTRICAL CHARACTERISTICS (T_J = 25 °C unless otherwise specified).

Symbol	Parameter	Test Cond	lition	Min	Тур	Max	Unit	
OFF CHAR	ACTERISTICS	•						
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	V _{GS} = 0 V, I _D	= 250 μΑ	40	-	-	V	
V _{(BR)DSS} /	Drain-to-Source Breakdown Voltage Temperature Coefficient			-	34.2	-	mV/° C	
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} = 0 V,	T _J = 25 °C	-	-	1		
		V _{DS} = 40 V	T _J = 125 °C	-	-	100	μΑ	
I _{GSS}	Gate-to-Source Leakage Current	V _{DS} = 0 V, V _G	S = ±20 V	_	-	±100	nA	
ON CHARA	ACTERISTICS (Note 5)							
V _{GS(TH)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_{D}$	= 250 μΑ	1.4	-	2.4	V	
V _{GS(TH)} /T	Negative Threshold Temperature Coefficient			-	6.4	=	mV/°C	
R _{DS(on)}	Drain-to-Source On Resistance	V _{GS} = 10 V	I _D = 20 A	-	3.1	4.2		
		V _{GS} = 4.5 V	I _D = 20 A	-	5.0	6.5	mΩ	
9FS	Forward Transconductance	V _{DS} = 15 V, I	_D = 20 A	1	21	-	S	
CHARGES,	, CAPACITANCES & GATE RESISTANCE							
C _{ISS}	Input Capacitance		V _{GS} = 0 V, f = 1 MHz, V _{DS} = 25 V		2700	-	pF	
Coss	Output Capacitance	V _{GS} = 0 V, f = 1 MH			360	_		
C _{RSS}	Reverse Transfer Capacitance			_	250	_	-	
Q _{G(TOT)}	Total Gate Charge	V _{GS} = 4.5 V, V _{DS} =	V _{GS} = 4.5 V, V _{DS} = 20 V; I _D = 20 A		25	-		
Q _{G(TOT)}	Total Gate Charge	V _{GS} = 10 V, V _{DS} =	20 V; I _D = 20 A	-	51	-		
Q _{G(TH)}	Threshold Gate Charge			-	2.0	-	nC	
Q _{GS}	Gate-to-Source Charge		2211	-	8.0	-	1	
Q_{GD}	Gate-to-Drain Charge	$V_{GS} = 4.5 \text{ V}, V_{DS} =$	$V_{GS} = 4.5 \text{ V}, V_{DS} = 20 \text{ V}; I_D = 20 \text{ A}$		12.7	-	1	
V _{GP}	Plateau Voltage			-	3.2	-	V	
SWITCHING	G CHARACTERISTICS (Note 6)							
t _{d(ON)}	Turn-On Delay Time			-	13	-		
t _r	Rise Time	V _{GS} = 4.5 V. V	ne = 20 V.	i	24	-	ns	
t _{d(OFF)}	Turn-Off Delay Time	$V_{GS} = 4.5 \text{ V, V}_{D}$ $I_{D} = 10 \text{ A, R}_{G}$; = 1.0 Ω	i	27	-		
t _f	Fall Time		- 8.0		_	1		
DRAIN-SO	URCE DIODE CHARACTERISTICS	•			•		•	
V _{SD}	Forward Diode Voltage	V _{GS} = 0 V,	T _J = 25 °C	-	0.73	1.2		
		I _S = 5 A	T _J = 125 °C	-	0.57	-	V	
t _{RR}	Reverse Recovery Time		1	-	28.6	-		
ta	Charge Time	$V_{GS} = 0 \text{ V, dIS/dt}$	= 100 A/us.	-	14	-	ns	
t _b	Discharge Time	I _S = 10	Α	-	14.5	-	1	
Q _{RR}	Reverse Recovery Charge	1 1		-	23.4	_	nC	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

5. Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%..$ 6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS (continued)

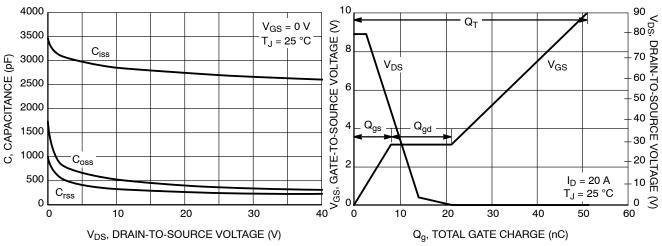


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source Voltage vs. Total Charge

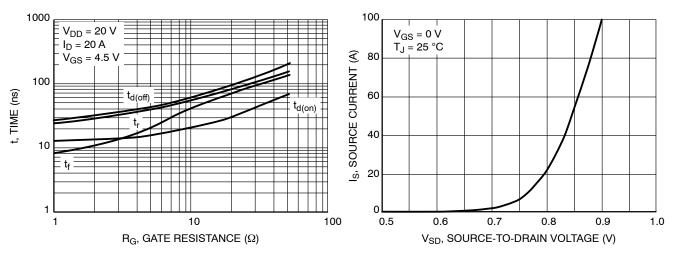


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

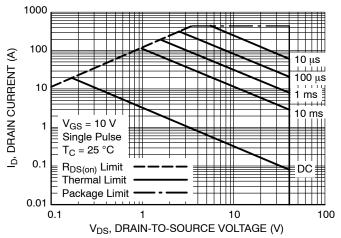


Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL CHARACTERISTICS (continued)

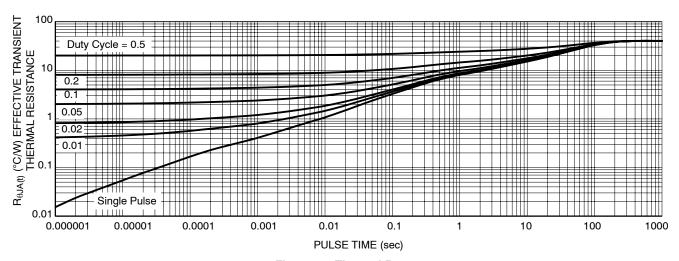


Figure 12. Thermal Response

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NVMFS5832NLWFT1G-UM	5832LW	DFNW5 (Pb-Free)	1,500 / Tape & Reel

DISCONTINUED (Note 7)

NVMFS5832NLT1G	V5832L	DFN5 (Pb-Free)	1,500 / Tape & Reel
NVMFS5832NLWFT1G	5832LW	DFN5 (Pb-Free)	1,500 / Tape & Reel
NVMFS5832NLT3G	V5832L	DFN5 (Pb-Free)	5,000 / Tape & Reel
NVMFS5832NLWFT3G	5832LW	DFN5 (Pb-Free)	5,000 / Tape & Reel

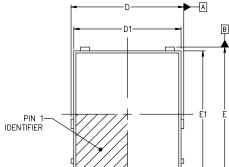
[†] For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

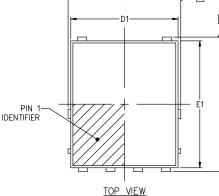
^{7.} **DISCONTINUED:** These devices are not available. Please contact your **onsemi** representative for information. The most current information on these devices may be available on www.onsemi.com.

REVISION HISTORY

Revision Description of Changes		Date
5	Datasheet reactivated due to active NVMFS5832NLWFT1G-UM part and rebranded to onsemi .	11/13/2025

This document has undergone updates prior to the inclusion of this revision history table. The changes tracked here only reflect updates made on the noted approval dates.

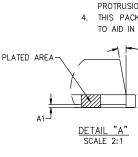



// 0.10 C

△ 0.10 C

DFNW5 4.90x5.90x1.00, 1.27P CASE 507BA **ISSUE C**

DATE 19 SEP 2024

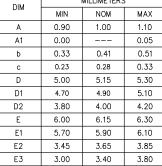


DETAIL A

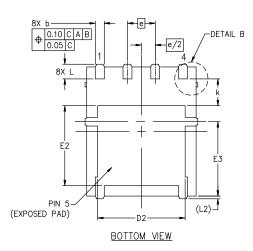
SIDE VIEW

SEATING

C PLANE



NO MOLD COMPOUND ON THE BOTTOM OF **DETAIL** TIE BAR. SCALE 2:1


NOTES:


- DIMENSIONING TOLERANCING TO ASME Y14.5M-2018.
- ALL DIMENSIONS ARE IN MILLIMETERS.
- .3. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
- THIS PACKAGE CONTAINS WETTABLE FLANK DESIGN FEATURES TO AID IN FILLET FORMATION ON THE LEADS DURING MOUNTING.

MILLIMETERS

L	0.00	0.15	0.50	
E1	5.70	5.90	6.10	
E2	3.45	3.65	3.85	
E3	3.00	3.40	3.80	
е	1.27 BSC			
k	1.20	1.35	1.50	
L	0.51	0.57	0.71	
L2	0.15 REF.			
θ	0.	6,	12*	

RECOMMENDED MOUNTING FOOTPRINT* *FOR ADDITIONAL INFORMATION ON OUR PD-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXXX = Specific Device Code

= Assembly Location Α Υ = Year

W = Work Week ZZ = Lot Traceability *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON26450H	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DFNW5 4.90x5.90x1.00, 1.27P		PAGE 1 OF 1	

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales