Features

Conduction

Compliant

Applications

• Ultra Low R_{DS(on)}

• Power Load Switch • Wireless Charging

• DC-DC Converters

Drain-to-Source Voltage

Gate-to-Source Voltage

Continuous Drain

Current (Note 1)

Power Dissipa-

Continuous Drain

Power Dissipation (Note 2)

Pulsed Drain Current

(1/8'' from case for 10 s)

Current (Note 2)

Temperature

tion (Note 1)

MOSFET – Power, Dual, N-Channel, µCool, 2.0x2.0x0.55 mm, UDFN6 30 V, 7.3 A

ON Semiconductor®

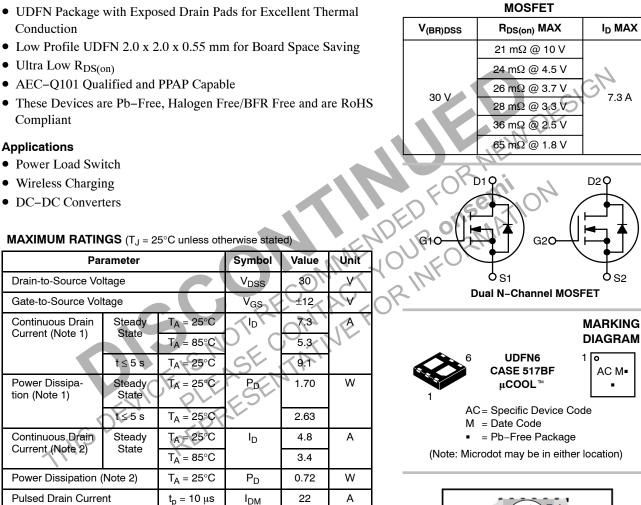
www.onsemi.com

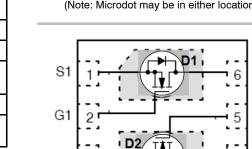
I_D MAX

7.3 A

S2

D2Q


Б

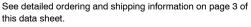

AC M.

D1

G2

S2

D2


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).

2. Surface-mounted on FR4 board using the minimum recommended pad size, 2 oz. Cu.

ORDERING INFORMATION

(Top View)

Parameter

Steady

State

t ≤ 5 s

Steady

State

t ≤ 5 s

Steady

State

MOSFET Operating Junction and Storage

Lead Temperature for Soldering Purposes

Source Current (Body Diode) (Note 1)

© Semiconductor Components Industries, LLC, 2016 June, 2024 - Rev. 1

-55 to

150

3.0

260

Т.,

T_{STG}

ls

 T_L

°C

A

°C

4

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient – Steady State (Note 3)	R_{\thetaJA}	73.6	
Junction-to-Ambient – t \leq 5 s (Note 3)	R_{\thetaJA}	47.6	°C/W
Junction-to-Ambient – Steady State min Pad (Note 4)	R_{\thetaJA}	174.4	

Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
Surface-mounted on FR4 board using the minimum recommended pad size, 2 oz. Cu.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Co	ondition	Min	Тур	Max	Units
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V,	I _D = 250 μA	30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 250 μA	, ref to 25°C		7		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 24 V	$T_{\rm J} = 25^{\circ}{\rm C}$ $T_{\rm J} = 125^{\circ}{\rm C}$			1 S	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, \	/ _{GS} = ±12 V		101	±100	nA
ON CHARACTERISTICS (Note 5)							

Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$	0.6		1.1	V
Negative Threshold Temp. Coefficient	V _{GS(TH)} /T _J		5	2.8		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 6.0 \text{ A}$	6	17.5	21	mΩ
		$V_{GS} = 4.5 \text{ V}, I_D = 5.0 \text{ A}$	20	20	24	
		$V_{GS} = 3.7 \text{ V}, I_D = 3.0 \text{ A}$	11	21	26	
		$V_{GS} = 3.3 \text{ V}, \text{ I}_{D} = 3.0 \text{ A}$		22	28	
		$V_{GS} = 2.5 \text{ V}, \text{ I}_{\text{D}} = 2.0 \text{ A}$		25	36	
		$V_{GS} = 1.8 V, J_{D} = 1.0 A$		40	65	
Forward Transconductance	9 _{FS}	V _{DS} = 1.5 V, 1 _D = 5.0 A		23		S

CHARGES, CAPACITANCES & GATE RESISTANCE

Input Capacitance	CISS		460		pF
Output Capacitance	Coss	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 15 V	225		
Reverse Transfer Capacitance	C _{RSS}	55	27		
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 4.5 V, V_{DS} = 10 V; I _D = 5.0 A	5.0	8.0	nC
Total Gate Charge	Q _{G(TOT)}		5.5	9.0	nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V, V _{DS} = 15 V;	0.55		
Gate-to-Source Charge	Q _{GS}	$I_{\rm D} = 5.0$ Å	2.5		
Gate-to-Drain Charge	Q _{GD}		1.1		

SWITCHING CHARACTERISTICS, V_{GS} = 4.5 V (Note 6)

Turn-On Delay Time	t _{d(ON)}		5	ns
Rise Time	t _r	V _{GS} = 4.5 V, V _{DD} = 15 V,	15	
Turn-Off Delay Time	t _{d(OFF)}	$I_D = 5.0 \text{ A}, \text{ R}_G = 1 \Omega$	13	
Fall Time	t _f		1.7	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.

Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

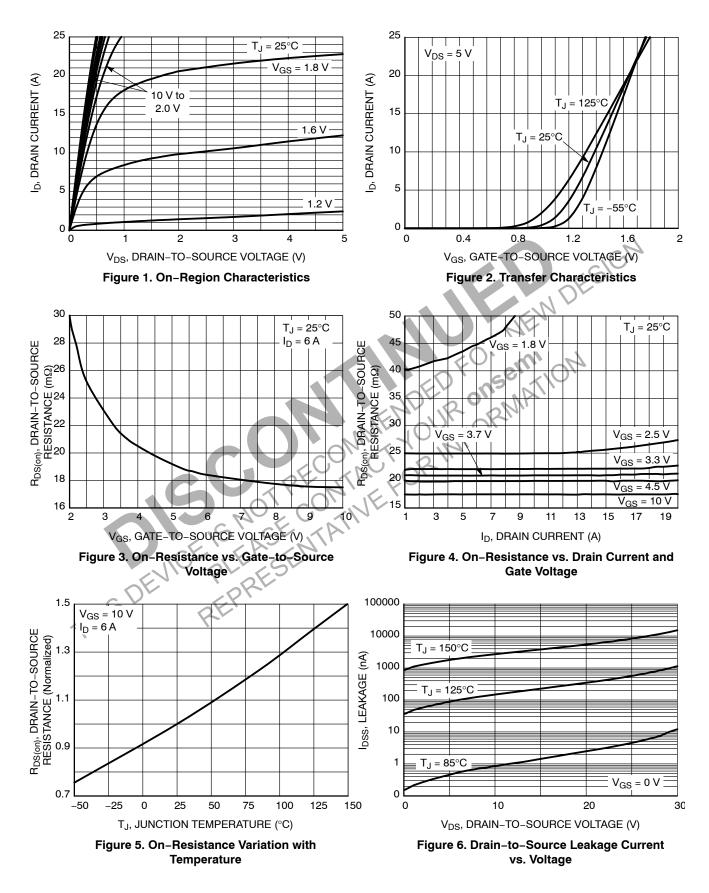
Parameter	Symbol	Test Condition		Min	Тур	Max	Units
DRAIN-SOURCE DIODE CHARACTEI	RISTICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.7	1.0	V
		V _{GS} = 0 V, I _S = 2.0 A	T _J = 125°C		0.6		
Reverse Recovery Time	t _{RR}	V_{GS} = 0 V, dls/dt = 100 A/µs, I _S = 2.0 A			18.5		ns
Charge Time	t _a				9.3		
Discharge Time	t _b				9.1		
Reverse Recovery Charge	Q _{RR}				7.8		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

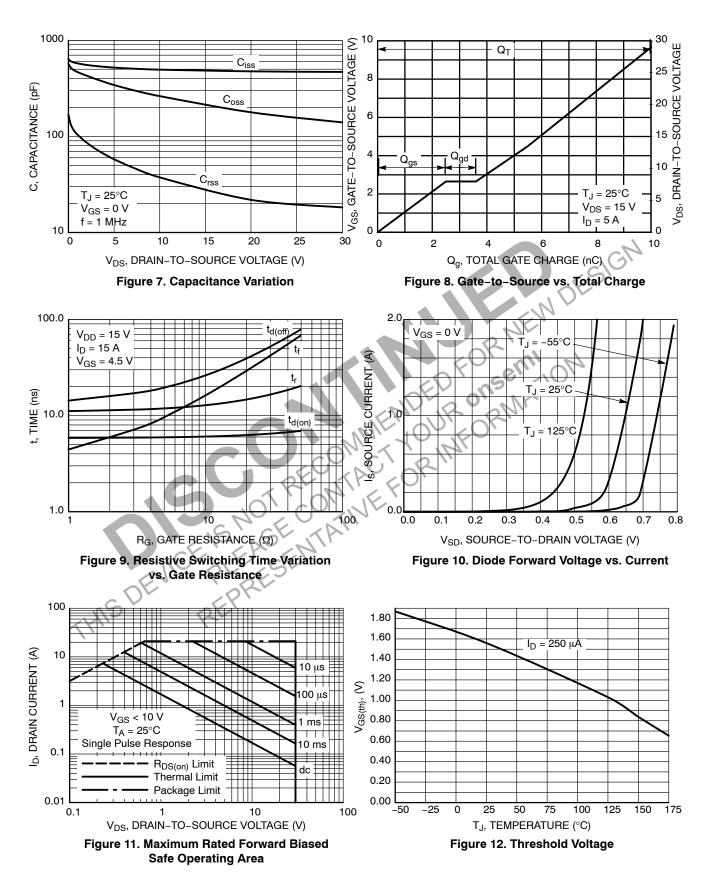
5. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 2%.

6. Switching characteristics are independent of operating junction temperatures.

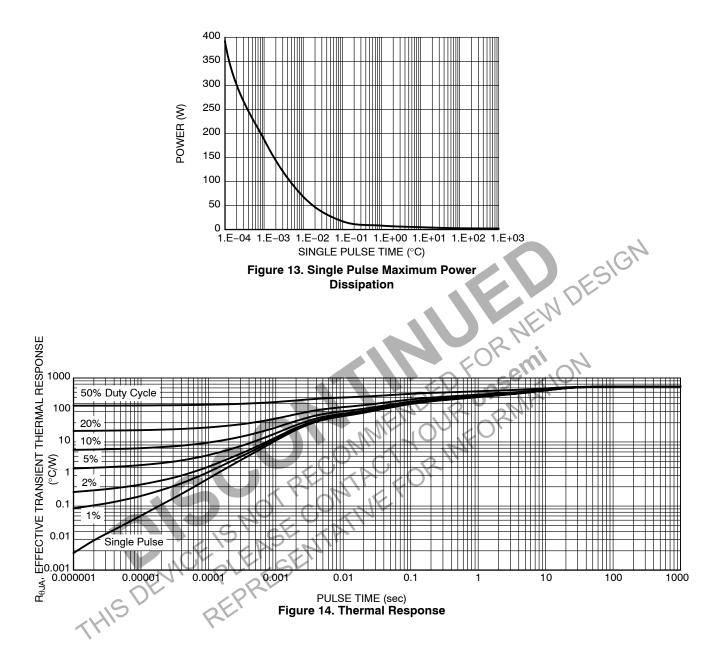
DEVICE ORDERING INFORMATION

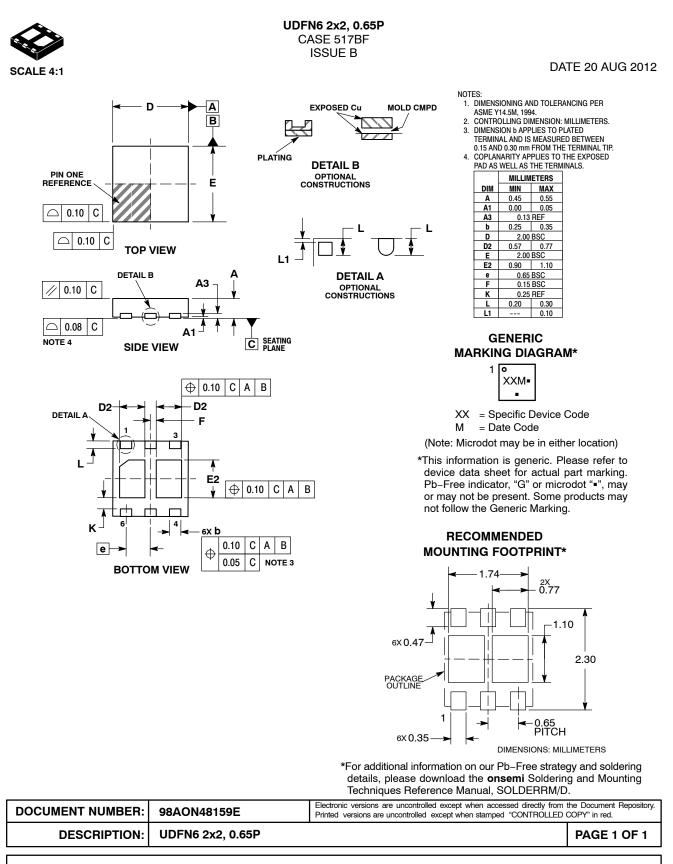

Device	Package	Shipping [†] C
NVLUD4C26NTAG	UDFN6 (Pb–Free)	3000 / Tape & Reel

~~


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

sizes please refer to our Tape estates please refer to our Tape Provide the second control of the second contr


TYPICAL CHARACTERISTICS


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>