Silicon Carbide (SiC) MOSFET - EliteSiC, 23 mohm, 650 V, M3S, TO-247-4L
NVH4L023N065M3S

Features
• Typical R_{DS(on)} = 23 mΩ @ V_{GS} = 18 V
• Ultra Low Gate Charge (Q_{G(tot)} = 69 nC)
• High Speed Switching with Low Capacitance (C_{oss} = 153 pF)
• 100% Avalanche Tested
• AEC–Q101 Qualified and PPAP Capable
• This Device is Halide Free and RoHS Compliant with Exemption 7a, Pb–Free 2LI (on second level interconnection)

Applications
• Automotive On Board Charger
• Automotive DC–DC Converter for EV/HEV

MAXIMUM RATINGS (T_{J} = 25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain–to–Source Voltage</td>
<td>V_{DSS}</td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Gate–to–Source Voltage</td>
<td>V_{GS}</td>
<td>–8/+22</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Drain Current (Note 1)</td>
<td>ID</td>
<td>40</td>
<td>A</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_{D}</td>
<td>245</td>
<td>W</td>
</tr>
<tr>
<td>Continuous Drain Current (Note 2)</td>
<td>ID</td>
<td>40</td>
<td>A</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_{D}</td>
<td>122</td>
<td>W</td>
</tr>
<tr>
<td>Pulsed Drain Current (Note 3)</td>
<td>ID_{SM}</td>
<td>225</td>
<td>A</td>
</tr>
<tr>
<td>Continuous Source–Drain Current (Body Diode)</td>
<td>IS</td>
<td>37</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed Source–Drain Current (Body Diode) (Note 3)</td>
<td>IS_{SM}</td>
<td>166</td>
<td>A</td>
</tr>
<tr>
<td>Single Pulse Avalanche Energy (Note 4)</td>
<td>E_{AS}</td>
<td>192</td>
<td>mJ</td>
</tr>
<tr>
<td>Operating Junction and Storage Temperature Range</td>
<td>T_{J, T_{stg}}</td>
<td>–55 to +175</td>
<td>°C</td>
</tr>
<tr>
<td>Lead Temperature for Soldering Purposes (1/8” from case for 10 seconds)</td>
<td>T_{L}</td>
<td>270</td>
<td>°C</td>
</tr>
</tbody>
</table>

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
1. 40 A is limited by package. Power chip max drain current is 67 A if limited by max junction temperature.
2. 40 A is limited by package. Power chip max drain current is 47 A if limited by max junction temperature.
3. Repetitive rating, limited by max junction temperature.
4. E_{AS} of 192 mJ is based on starting T_{J} = 25°C, L = 1 mH, I_{AS} = 19.6 A, V_{DD} = 100 V, V_{GS} = 18 V

MARKING DIAGRAM

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
<th>Shipping</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVH4L023N065M3S</td>
<td>TO–247–4L</td>
<td>30 Units / Tube</td>
</tr>
</tbody>
</table>
NVH4L023N065M3S

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance, Junction–to–Case</td>
<td>R_JC</td>
<td>0.61</td>
<td>°C/W</td>
</tr>
<tr>
<td>(Note 5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, Junction–to–Ambient</td>
<td>R_JA</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>(Note 5)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Values of Gate–to–Source Voltage</td>
<td>V_GSop</td>
<td>–5...–3 +18</td>
<td>V</td>
</tr>
</tbody>
</table>

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain–to–Source Breakdown Voltage</td>
<td>V_BRDSS</td>
<td>V_GS = 0 V, I_D = 1 mA, T_J = 25°C</td>
<td>650</td>
<td>–</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>Drain–to–Source Breakdown Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Coefficient</td>
<td>AV_BRDSS/AT_J</td>
<td>I_D = 1 mA, Referenced to 25°C</td>
<td>–</td>
<td>89</td>
<td>–</td>
<td>mV/°C</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>I_DSS</td>
<td>V_D = 650 V, T_J = 25°C</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_D = 650 V, T_J = 175°C (Note 7)</td>
<td>–</td>
<td>–</td>
<td>500</td>
<td>μA</td>
</tr>
<tr>
<td>Gate–to–Source Leakage Current</td>
<td>I_GSS</td>
<td>V_GS = –8/+22 V, V_D = 0 V</td>
<td>–</td>
<td>–</td>
<td>±1.0</td>
<td>μA</td>
</tr>
<tr>
<td>ON CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain–to–Source On Resistance</td>
<td>R_DSO</td>
<td>V_GS = 18 V, I_D = 20 A, T_J = 25°C</td>
<td>–</td>
<td>23</td>
<td>33</td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_GS = 18 V, I_D = 20 A, T_J = 175°C (Note 7)</td>
<td>–</td>
<td>34</td>
<td>–</td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_GS = 15 V, I_D = 20 A, T_J = 25°C</td>
<td>–</td>
<td>29</td>
<td>–</td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_GS = 15 V, I_D = 20 A, T_J = 175°C (Note 7)</td>
<td>–</td>
<td>37</td>
<td>–</td>
<td>mΩ</td>
</tr>
<tr>
<td>Gate Threshold Voltage</td>
<td>V_GSTD</td>
<td>V_GS = V_D, I_D = 10 mA, T_J = 25°C</td>
<td>2</td>
<td>2.8</td>
<td>4</td>
<td>V</td>
</tr>
<tr>
<td>Forward Transconductance</td>
<td>g_FS</td>
<td>V_D = 10 V, I_D = 20 A (Note 7)</td>
<td>–</td>
<td>14</td>
<td>–</td>
<td>S</td>
</tr>
<tr>
<td>CHARGES, CAPACITANCES & GATE RESISTANCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>C_ISS</td>
<td>V_D = 400 V, V_GS = 0 V, f = 1 MHz (Note 7)</td>
<td>–</td>
<td>1952</td>
<td>–</td>
<td>pF</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>C_OSS</td>
<td>–</td>
<td>–</td>
<td>153</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Reverse Transfer Capacitance</td>
<td>C_RSS</td>
<td>–</td>
<td>–</td>
<td>13</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Total Gate Charge</td>
<td>Q_GTOT</td>
<td>V_D = 400 V, I_D = 20 A, V_GS = –3/18 V (Note 7)</td>
<td>–</td>
<td>69</td>
<td>–</td>
<td>nC</td>
</tr>
<tr>
<td>Gate–to–Source Charge</td>
<td>Q_GS</td>
<td>–</td>
<td>–</td>
<td>19</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Gate–to–Drain Charge</td>
<td>Q_GD</td>
<td>–</td>
<td>–</td>
<td>18</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Gate Resistance</td>
<td>R_G</td>
<td>f = 1 MHz</td>
<td>–</td>
<td>4.0</td>
<td>–</td>
<td>Ω</td>
</tr>
<tr>
<td>SWITCHING CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn–On Delay Time</td>
<td>t_ON</td>
<td>V_GS = –3/18 V, V_D = 400 V, I_D = 20 A, R_D = 4.7 Ω, T_J = 25°C (Notes 6 and 7)</td>
<td>–</td>
<td>11</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>Turn–Off Delay Time</td>
<td>t_OFF</td>
<td>–</td>
<td>–</td>
<td>35</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_R</td>
<td>–</td>
<td>–</td>
<td>15</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Fall Time</td>
<td>t_F</td>
<td>–</td>
<td>–</td>
<td>9.6</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Turn–On Switching Loss</td>
<td>E_ON</td>
<td>–</td>
<td>–</td>
<td>51</td>
<td>–</td>
<td>μJ</td>
</tr>
<tr>
<td>Turn–Off Switching Loss</td>
<td>E_OFF</td>
<td>–</td>
<td>–</td>
<td>29</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Total Switching Loss</td>
<td>E_TOT</td>
<td>–</td>
<td>–</td>
<td>80</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS *(TJ = 25°C unless otherwise specified)* (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWITCHING CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn–On Delay Time</td>
<td>t\text{ON}</td>
<td>VGS = −3/18 V, VDD = 400 V, I_D = 20 A, R_G = 4.7 Ω, TJ = 175°C (Notes 6 and 7)</td>
<td>−</td>
<td>9.6</td>
<td>−</td>
<td>ns</td>
</tr>
<tr>
<td>Turn–Off Delay Time</td>
<td>t\text{OFF}</td>
<td>I_D = 20 A, RG = 4.7 Ω, TJ = 175°C</td>
<td>−</td>
<td>41</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_r</td>
<td></td>
<td>−</td>
<td>14</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>Fall Time</td>
<td>t_f</td>
<td></td>
<td>−</td>
<td>12</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>Turn–On Switching Loss</td>
<td>E_{ON}</td>
<td>I_D = 20 A, RG = 4.7 Ω, TJ = 175°C</td>
<td>−</td>
<td>51</td>
<td>−</td>
<td>µJ</td>
</tr>
<tr>
<td>Turn–Off Switching Loss</td>
<td>E_{OFF}</td>
<td></td>
<td>−</td>
<td>45</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>Total Switching Loss</td>
<td>E_{TOT}</td>
<td></td>
<td>−</td>
<td>96</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>SOURCE–TO–DRAIN DIODE CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward Diode Voltage</td>
<td>V_{SD}</td>
<td>I_{SD} = 20 A, V_{GS} = −3 V, TJ = 25°C</td>
<td>−</td>
<td>3.9</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>Reverse Recovery Time</td>
<td>t_{RR}</td>
<td>V_{GS} = −3 V, I_{S} = 20 A, \text{dl/dt} = 1000 A/µs, V_{DS} = 400 V, TJ = 25°C (Note 7)</td>
<td>−</td>
<td>19</td>
<td>−</td>
<td>ns</td>
</tr>
<tr>
<td>Charge Time</td>
<td>t_{q}</td>
<td></td>
<td>−</td>
<td>11</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>Discharge Time</td>
<td>I_{D}</td>
<td></td>
<td>−</td>
<td>8</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>Reverse Recovery Charge</td>
<td>Q_{RR}</td>
<td></td>
<td>−</td>
<td>97</td>
<td>−</td>
<td>nC</td>
</tr>
<tr>
<td>Reverse Recovery Energy</td>
<td>E_{REC}</td>
<td></td>
<td>−</td>
<td>8.7</td>
<td>−</td>
<td>µJ</td>
</tr>
<tr>
<td>Peak Reverse Recovery Current</td>
<td>I_{RRM}</td>
<td></td>
<td>−</td>
<td>11</td>
<td>−</td>
<td>A</td>
</tr>
</tbody>
</table>

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

6. EON/EOFF result is with body diode.

7. Defined by design, not subject to production test.
TYPICAL CHARACTERISTICS

Figure 1. Output Characteristics

Figure 2. Output Characteristics

Figure 3. Transfer Characteristics

Figure 4. On−Resistance vs Gate Voltage

Figure 5. On−Resistance vs Drain Current

Figure 6. On−Resistance vs Junction Temperature
Figure 7. Capacitance Characteristics

Figure 8. Stored Energy vs Drain to Source Voltage

Figure 9. Gate Charge Characteristics

Figure 10. Reverse Conduction Characteristics

Figure 11. Reverse Conduction Characteristics

Figure 12. Safe Operating Area
TYPICAL CHARACTERISTICS

Figure 13. Avalanche Current vs Pulse Time (UIS)

Figure 14. Maximum Power Dissipation vs Case Temperature

Figure 15. Inductive Switching Loss vs Drain Current

Figure 16. Inductive Switching Loss vs Drain Current

Figure 17. Inductive Switching Loss vs Drain Voltage

Figure 18. Inductive Switching Loss vs Gate Resistance
TYPICAL CHARACTERISTICS

Figure 19. Inductive Switching Loss vs Gate Resistance

Figure 20. Thermal Response Characteristics