<u>Onsemí,</u>

<u>MOSFET</u> – Power, N-Channel

80 V, 1.0 mΩ NVCW4LS001N08HA

Features

- Typical $R_{DS(on)} = 0.82 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$
- Typical $Q_{g(tot)} = 166 \text{ nC}$ at $V_{GS} = 10 \text{ V}$
- AEC-Q101 Qualified
- RoHS Compliant

DIMENSION (µm)

Die Size	6604 x 4445
Scribe Width	80
Source Attach Area	(6362 x 2059) x 2
Gate Attach Area	330 x 600
Die Thickness	101.6

Gate and Source : AlCu Drain : Ti–Ni–Ag (back side of die) Passivation : Polyimide Wafer Diameter : 8 inch Wafer Unsawn on UV Tape Bad dice identified in Inking Gross Die Count : 806

ORDERING INFORMATION

Device	Package
NVCW4LS001N08HA	Unsawn Wafer on Ring Frame

RECOMMENDED STORAGE CONDITIONS

Temperature	22 to 28°C
RH	40% to 66%

ELECTRICAL CHARACTERISTICS

The Chip is 100% Probed to Meet the Conditions and Limits Specified at T_J = 25 $^\circ\text{C}$

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$	80	-	-	V
I _{DSS}	Drain to Source Leakage Current	$V_{DS} = 80 \text{ V}, V_{GS} = 0 \text{ V}$	-	-	10	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	100	nA
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS}=V_{DS},\ I_{D}=650\ \mu A$	2.0	-	4.0	V
*R _{DS(on)}	Bare Die Drain to Source On Resistance	$I_D = 50 \text{ A}, \text{ V}_{\text{GS}} = 10 \text{ V}$	-	0.82	1.0	mΩ

*Accurate RDS(on) test at die level is not feasible for this thin die as limited by the test contact precision attainable in a die form. The max RDS(on) specification is defined from the historical performance of the die in package but is not guaranteed by test in production. The die RDS(on) performance depends on the Source wire/ribbon bonding layout.

ABSOLUTE MAXIMUM RATINGS

in Reference to the NVBLS1D1N08H electrical data in TOLL (T_J = 25°C unless otherwise noted)

Symbol	Parameter		Ratings	Unit	
V _{DSS}	Drain to Source Voltage		80	V	
V _{GS}	Gate to Source Voltage		±20	V	
Ι _D	Continuous Drain Current $R_{\theta JC}$ (Note 1, 2)	$T_{C} = 25^{\circ}C$	351	А	
		$T_{\rm C} = 100^{\circ} \rm C$	248	А	
PD	Power Dissipation $R_{\theta JC}$ (Note 1)	$T_{\rm C} = 25^{\circ} \rm C$	311	W	
	$T_{C} = 100^{\circ}C$		156	W	
E _{AS}	Single Pulse Avalanche Energy (I _{L(pk)} = 31.9 A)		1580	mJ	
$T_{J_{J}}T_{STG}$	Operating and Storage Temperature		–55 to +175	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

2. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

THERMAL CHARACTERISTICS

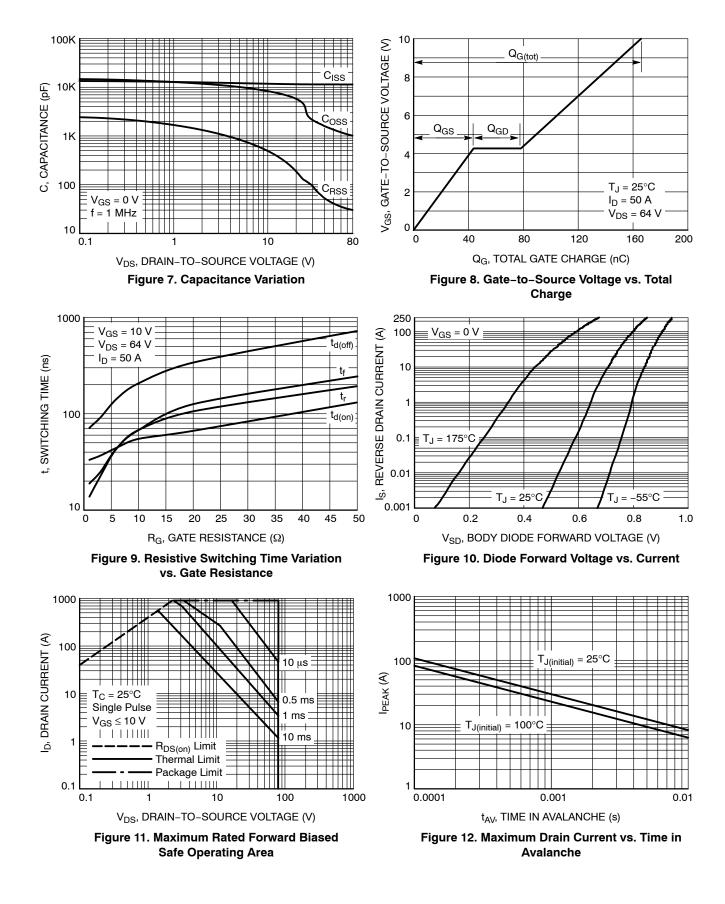
Symbol Parameter		Value	Unit
R _{θJ C}	Thermal Resistance, Junction to Case Steady State	0.48	°C/W
R _{0J A}	Thermal Resistance, Junction to Ambient Steady State (Note 3)	35.8	°C/W

3. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.

ELECTRICAL CHARACTERISTICS

in Reference to the NVBLS1D1N08H electrical data in TOLL (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
OFF CHA	RACTERISTICS				-	
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$	80	-	-	V
I _{DSS}	Drain to Source Leakage Current	V_{DS} = 80 V, V_{GS} = 0 V	-	-	10	μA
I _{GSS}	Gate to Source Leakage Current	$V_{DS} = 0 \text{ V}, \text{ V}_{GS} = 20 \text{ V}$	-	-	100	nA
ON CHAF	RACTERISTICS (Note 4)					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 650 \ \mu A$	2.0	-	4.0	V
R _{DS(on)}	Drain to Source On-Resistance	V_{GS} = 10 V, I _D = 50 A	-	0.92	1.05	mΩ
g fs	Forward Transconductance	$V_{DS} = 5 \text{ V}, \text{ I}_{D} = 50 \text{ A}$	-	213	-	S
CHARGE	S, CAPACITANCE					
C _{iss}	Input Capacitance	$V_{DS} = 40 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$	-	11200	-	pF
C _{oss}	Output Capacitance	f = 1 MHz	_	1600	-	pF
C _{rss}	Reverse Transfer Capacitance		-	49	-	pF
Q _{g(ToT)}	Total Gate Charge	V_{GS} = 10 V, V_{DS} = 64 V, I_{D} = 50 A	-	166	-	nC
Q _{g(th)}	Threshold Gate Charge		_	29	-	nC
Q _{gs}	Gate to Source Gate Charge		_	44	-	nC
Q _{gd}	Gate to Drain "Miller" Charge		_	35	-	nC
SWITCHI	NG CHARACTERISTICS (Note 5)					
t _{d(on)}	Turn-On Delay Time	$V_{DS} = 64 \text{ V}, \text{ I}_{D} = 50 \text{ A}, \text{ V}_{GS} = 10 \text{ V},$	-	45	-	ns
t _r	Rise Time	$R_{G} = 6 \Omega$	-	43	-	ns
t _{d(off)}	Turn-Off Delay Time		-	141	-	ns
t _f	Fall Time		-	43	-	ns
DRAIN -	SOURCE DIODE CHARACTERISTICS		•	•	•	
V	Source to Drain Diade Veltage				1.0	V


V _{SD}	Source to Drain Diode Voltage	$I_{S} = 50 \text{ A}, V_{GS} = 0 \text{ V}$	-	-	1.2	V
t _{rr}	Reverse Recovery Time	I_S = 50 A, V_{GS} = 0 V, dI_S/dt = 100 A/ μs	-	92	-	ns
Q _{rr}	Reverse Recovery Charge		-	234	-	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 2%. 5. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

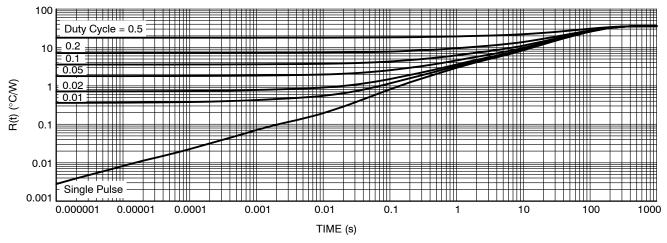


Figure 13. Transient Thermal Impedance

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters, including "Typicals" must be validated for each customer applications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights or the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** produc

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative