MOSFET - Dual, N-Channel, Small Signal, SOT-963, 1.0 mm x 1.0 mm

20 V, 220 mA

Features

- Dual N-Channel MOSFET
- Offers a Low R_{DS(ON)} Solution in the Ultra Small 1.0 x 1.0 mm Package
- 1.5 V Gate Voltage Rating
- Ultra Thin Profile (< 0.5 mm) Allows It to Fit Easily into Extremely Thin Environments such as Portable Electronics
- This is a Pb-Free Device

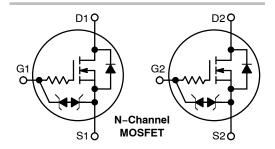
Applications

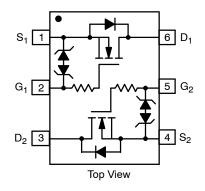
- General Purpose Interfacing Switch
- Optimized for Power Management in Ultra Portable Equipment
- Analog Switch

MAXIMUM RATINGS (T_J = 25°C unless otherwise specified)

Parameter			Symbol	Value	Unit	
Drain-to-Source Voltage			V _{DSS}	20	V	
Gate-to-Source Voltag	е		V _{GS}	±8	V	
Continuous Drain	Steady	$T_A = 25^{\circ}C$		220		
Current (Note 1)	State	$T_A = 85^{\circ}C$	I_{D}	160	mA	
	t ≤ 5 s	$T_A = 25^{\circ}C$		280		
Power Dissipation	Steady			125		
(Note 1)	State	$T_A = 25^{\circ}C$	P_{D}		mW	
	t ≤ 5 s			200		
Pulsed Drain Current $t_p = 10 \mu s$			I _{DM}	800	mA	
Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to 150	°C	
Source Current (Body Diode) (Note 2)			IS	200	mA	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			T_L	260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- Surface-mounted on FR4 board using the minimum recommended pad size, 1 oz Cu.
- 2. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%


ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D Max
	1.5 Ω @ 4.5 V	
20 V	2.0 Ω @ 2.5 V	0.22 A
	3.0 Ω @ 1.8 V	
	4.5 Ω @ 1.5 V	

PINOUT: SOT-963

= Specific Device Code 3

= Date Code

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 3)	$R_{ hetaJA}$	1000	°C/W
Junction-to-Ambient - t = 5 s (Note 3)	ιθЈΑ	600	O/ VV

^{3.} Surface-mounted on FR4 board using the minimum recommended pad size, 1 oz Cu.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS		•					
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		20			V
Zero Gate Voltage Drain Current		V _{GS} = 0 V, V _{DS} = 5 V	T _J = 25°C			50	nA
	I _{DSS}		T _J = 85°C			200	
		V _{GS} = 0 V, V _{DS} = 16 V	T _J = 25°C			100	nA
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} =	±5.0 V			±100	nA
ON CHARACTERISTICS (Note 4)		•					
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 2$.50 μΑ	0.4		1.0	V
Drain-to-Source On Resistance		V _{GS} = 4.5 V, I _D = 100 mA			0.75	1.5	Ω
		V _{GS} = 2.5 V, I _D = 50 mA			1.0	2.0	
	R _{DS(ON)}	V _{GS} = 1.8 V, I _D = 20 mA			1.4	3.0	
		V _{GS} = 1.5 V, I _D = 10 mA			1.8	4.5	
		V _{GS} = 1.2 V, I _D = 1.0 mA			2.8		
Forward Transconductance	9FS	V _{DS} = 5.0 V, I _D = 125 mA			0.48		S
Source-Drain Diode Voltage	V_{SD}	V _{GS} = 0 V, I _S = 10 mA			0.6	1.0	V
CAPACITANCES							
Input Capacitance	C _{ISS}				12.5		
Output Capacitance	C _{OSS}	f = 1.0 MHz, V _{GS} = 0 V V _{DS} = 15 V			3.6		pF
Reverse Transfer Capacitance	C _{RSS}				2.6		
SWITCHING CHARACTERISTICS, V _{GS} =	4.5 V (Note 4)						
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 4.5 V, V_{DD} = 10 V, I_{D} = 200 mA, R_{G} = 2.0 Ω			16.5		- - ns
Rise Time	t _r				25.5		
Turn-Off Delay Time	t _{d(OFF)}				142		
Fall Time	t _f				80		

 $^{{\}bf 4.} \ \ {\bf Switching\ characteristics\ are\ independent\ of\ operating\ junction\ temperatures.}$

ORDERING INFORMATION

Device	Package	Shipping [†]
NTUD3170NZT5G	SOT-963 (Pb-Free)	8000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL CHARACTERISTICS

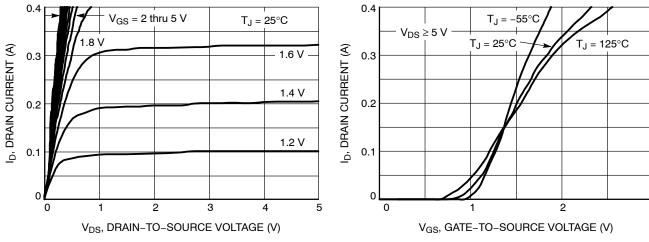


Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

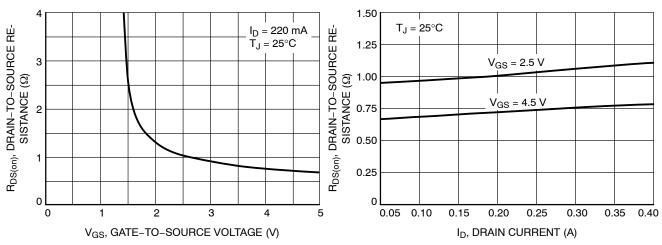


Figure 3. On-Resistance vs. Gate Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

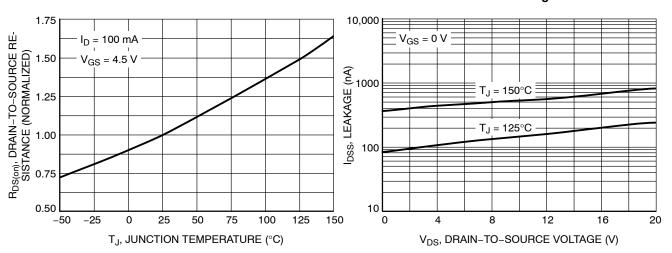


Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

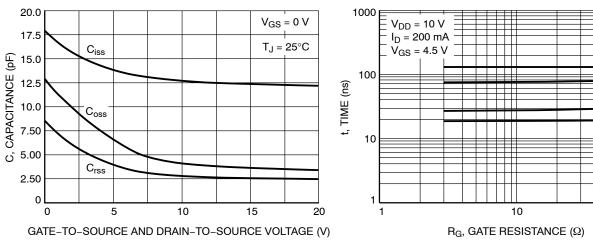


Figure 7. Capacitance Variation

Figure 8. Resistive Switching Time Variation vs. Gate Resistance

100

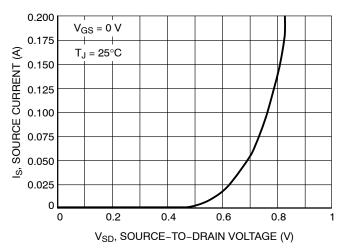
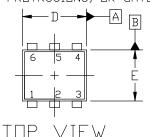
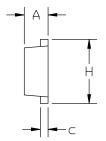


Figure 9. Diode Forward Voltage vs. Current

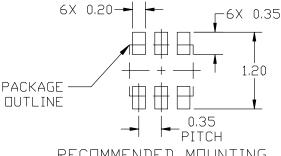



SOT-963 1.00x1.00x0.37, 0.35P CASE 527AD **ISSUE F**

DATE 20 FEB 2024

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018. 1.
- CONTROLLING DIMENSION: MILLIMETERS.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS, MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,
- PROTRUSIONS, OR GATE BURRS



VIFW

	MILLIMETERS		
DIM	MIN.	N□M.	MAX.
А	0.34	0.37	0.40
b	0.10	0.15	0.20
C	0.07	0.12	0.17
D	0.95	1.00	1.05
E	0.75	0.80	0.85
е	0.35 BSC		
Н	0.95	1.00	1.05
L	0.19 REF		
L2	0.05	0.10	0.15

RECOMMENDED MOUNTING FOOTPRINT

*For additional information on our Pb-Free strategy and soldering details, please download the $\ensuremath{\square N}$ Semiconductor Soldering and Mounting Techniques Reference manual, SOLDERRM/D.

BUTTUM VIEW

STYLE 1:	STYLE 2:	STYLE 3:
PIN 1. EMITTER 1	PIN 1. EMITTER 1	PIN 1. CATHODE 1
2. BASE 1	EMITTER2	CATHODE 1
COLLECTOR 2	3. BASE 2	ANODE/ANODE 2
4. EMITTER 2	COLLECTOR 2	CATHODE 2
5. BASE 2	5. BASE 1	CATHODE 2
COLLECTOR 1	COLLECTOR 1	6. ANODE/ANODE 1
STYLE 4:	STYLE 5:	STYLE 6:

PIN 1. CATHODE 2. CATHODE 3. ANODE 4. ANODE PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER

PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5 CATHODE CATHODE 6. CATHODE 6. CATHODE

5. COLLECTOR 6. COLLECTOR STYLE 8: PIN 1. DRAIN 2. DRAIN STYLE 7: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 3. GATE 4. SOURCE 5. ANODE 6. CATHODE 5. DRAIN 6. DRAIN 5. GATE 2 6. DRAIN 1

STYLE 9: PIN 1. SOURCE 1 2. GATE 1 3. DRAIN 2 4. SOURCE 2

GENERIC MARKING DIAGRAM*

XX = Specific Device Code = Month Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON26456D	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-963 1.00x1.00x0.37, 0.35P		PAGE 1 OF 1	

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

STYLE 10: PIN 1. CATHODE 1 2. N/C 3. CATHODE 2

4. ANODE 2

5. N/C 6. ANODE 1

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales