

MOSFET – Power, N-Channel POWERTRENCH® Power Clip 25 V Asymmetric Dual

NTTFD1D8N02P1E

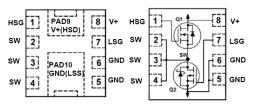
Features

- Small Footprint (3.3 mm x 3.3 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- These Devices are Pb-Free and are RoHS Compliant

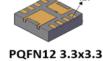
Typical Applications

- DC-DC Converters
- System Voltage Rails

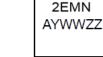
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)


Parameter			Symbol	Q1	Q2	Unit
Drain-to-Source Volta	Drain-to-Source Voltage			25	25	V
Gate-to-Source Volta	Gate-to-Source Voltage			+16 -12	+16 -12	V
Continuous Drain Current R _{θJC}		T _C = 250 °C	I _D	61	126	Α
(Note 3)	Steady	T _C = 850 °C		44	91	
Power Dissipation R _{θJC} (Note 3)	State	T _A = 250 °C	P _D	25	36	W
Continuous Drain Current R _{BJA}		T _A = 250 °C	I _D	15	30	Α
(Notes 1, 3)	Steady	T _A = 850 °C		11	21	
Power Dissipation R _{θJA} (Notes 1, 3)	State	T _A = 250 °C	P _D	1.6	2.0	W
Continuous Drain		T _A = 250 °C	I _D	11	21	Α
Current R _{θJA} (Notes 2, 3)	Steady	T _A = 850 °C		8	15	
Power Dissipation R _{θJA} (Notes 2, 3)	State	T _A = 250 °C	P _D	0.8	0.9	W
Pulsed Drain Current	$T_A = 25^{\circ}$	$^{\circ}$ C, $t_{p} = 10 \ \mu s$	I _{DM}	483	861	Α
Energy Q1: I _L = 15.8 A _{pk} , L =	Drain-to-Source Avalanche A _{pk} , L = 0.3 mH (Note 4) 3 A _{pk} , L = 0.3 mH (Note 4)			37.3	150.1	mJ
Operating Junction and Storage Temperature Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			T _J , T _{stg}	-55 to	+ 150	°C
			T_L	26	60	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Surface-mounted on FR4 board using a 1 in² pad size, 2 oz. Cu pad.
- 2. Surface-mounted on FR4 board using minimum pad size, 2 oz. Cu pad.
- 3. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted. Actual continuous current will be limited by thermal & electro-mechanical application board design. $R_{\theta,JC}$ is determined by the user's board design.
- Q1 100% UIS tested at L = 0.1 mH, IAS = 24.2 A.
 Q2 100% UIS tested at L = 0.1 mH, IAS = 48.1 A.
- 5. This device does not have ESD protection diode.

FET	V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
Q1	25 V	4.2 m Ω @ 10 V	61 A
Q i	25 V	5.3 m Ω @ 4.5 V	OIA
Q2	25 V	1.4 m Ω @ 10 V	126 A
Q2	25 V	1.8 m Ω @ 4.5 V	120 A


ELECTRICAL CONNECTION

MARKING DIAGRAM

CASE 483AZ

2EMN = Specific Device Code A = Assembly Location Y = Year

WW = Work Week
ZZ = Assembly Lot Code

ORDERING INFORMATION

Device	Package	Shipping [†]
NTTFD1D8N02P1E	PQFN8 (Pb-Free)	3000 / Tape & Reel

† For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Q1 Max	Q2 Max	Unit
Junction-to-Case – Steady State (Notes 1, 3)	$R_{ heta JC}$	5.0	3.5	°C/W
Junction-to-Ambient – Steady State (Notes 1, 3)	$R_{\theta JA}$	77	63	
Junction-to-Ambient – Steady State (Notes 2, 3)	$R_{\theta JA}$	158	132	

ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		FET	Min	Тур	Max	Unit	
OFF CHARACTERISTICS	•								
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		Q1	25			V	
	_	$V_{GS} = 0 \text{ V, } I_{D} = 1 \text{ mA}$		Q2	25				
Drain-to-Source Breakdown	V _{(BR)DSS} /	I _D = 250 μA, ref to 25 °C		Q1		16		\//o0	
Voltage Temperature Coefficient	TJ	$I_D = 1 \text{ mA, ref to } 2$	5 °C	Q2		16		mV/°C	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V}, \qquad T_{J} = 25 ^{\circ}\text{C}$	Q1			10			
		$V_{DS} = 20 \text{ V}$	V _{DS} = 20 V	Q2			10	μΑ	
Gate-to-Source Leakage	I _{GSS}	V _{DS} = 0 V, V _{GS} = +16 V	V / –12 V	Q1			±100		
Current		V _{DS} = 0 V, V _{GS} = +16 V	V / –12 V	Q2			±100	nA	
ON CHARACTERISTICS (Note 6)								
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 190 \mu A$		Q1	1.2		2.0	V	
		$V_{GS} = V_{DS}, I_{D} = 310 \mu A$		Q2	1.2		2.0		
Negative Threshold	V _{GS(TH)} /T _J	I _D = 190 μA, ref to 2	25 °C	Q1		-4.4			
Temperature Coefficient		I _D = 310 μA, ref to 25 °C		Q2		-4.7		mV/°C	
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 15 A		Q1		3.3	4.2	- mΩ	
		V _{GS} = 4.5 V, I _D = 13 A				4.2	5.3		
		V _{GS} = 10 V, I _D = 29 A		Q2		1.04	1.4		
		V _{GS} = 4.5 V, I _D = 26 A				1.34	1.8		
Forward Transconductance	9FS	$V_{DS} = 5 \text{ V}, I_{D} = 18$	5 A	Q1		105		0	
		V _{DS} = 5 V, I _D = 29 A		Q2		207		S	
Gate-Resistance	R_{G}	T _A = 25 °C		Q1	0.54			Ω	
				Q2		0.45			
CHARGES, CAPACITANCES & C	SATE RESISTA	ANCE		•				•	
Input Capacitance	C _{ISS}			Q1		873		_	
				Q2		2700		pF	
Output Capacitance	C _{OSS} V _{GS} =			Q1		243			
		$V_{GS} = 0 \text{ V}, V_{DS} = 13 \text{ V},$	t = 1 MHz	Q2		748		pF	
Reverse Transfer Capacitance	C _{RSS}			Q1		19		pF	
				Q2		48			

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

6. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$.

7. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		FET	Min	Тур	Max	Unit	
CHARGES, CAPACITANCES	GATE RESIST	TANCE							
Total Gate Charge	Q _{G(TOT)}			Q1		5.5		_	
				Q2		17		nC	
Gate-to-Drain Charge	Q_{GD}	Q1: V _{GS} = 4.5 V, V _{DS} = 13 V; I _D = 15 A Q2: V _{GS} = 4.5 V, V _{DS} = 13 V; I _D = 29 A		Q1		1.0			
				Q2		2.7		nC	
Gate-to-Source Charge	Q _{GS}	1		Q1		2.4			
				Q2		7.3	nC		
Total Gate Charge	Q _{G(TOT)}	Q1: V _{GS} = 10 V, V _{DS} = 13 V;	; I _D = 15 A	Q1		12		- 0	
		Q2: V _{GS} = 10 V, V _{DS} = 13 V;	; I _D = 29 A	Q2		37.5		nC	
SWITCHING CHARACTERIST	CS, VGS = 4.5	V (Note 7)							
Turn-On Delay Time	t _{d(ON)}			Q1		9.5			
				Q2		19.1		ns	
Rise Time	t _r			Q1		2.3			
		$V_{GS} = 4.5 \text{ V}$	D 60	Q2		6.6		ns	
Turn-Off Delay Time	t _{d(OFF)}	Q1: $I_D = 15 \text{ A}, V_{DD} = 13 \text{ V}, V_{DD} = 1$	$R_G = 6 \Omega$	Q1		12.6			
				Q2		26.3		ns	
Fall Time	t _f			Q1		2.7		ns	
				Q2		6.3			
SWITCHING CHARACTERIST	CS, VGS = 10	V (Note 7)							
Turn-On Delay Time	t _{d(ON)}			Q1		6.6			
				Q2		9.4		ns	
Rise Time	t _r	-		Q1		1.1			
		$V_{GS} = 10 \text{ V}$	D 00	Q2		2.3		ns	
Turn-Off Delay Time	t _{d(OFF)}	Q1: $I_D = 15 \text{ A}$, $V_{DD} = 13 \text{ V}$, Q2: $I_D = 29 \text{ A}$, $V_{DD} = 13 \text{ V}$,	$R_G = 6 \Omega$ $R_G = 6 \Omega$	Q1		17.3			
				Q2		37.6		ns	
Fall Time	t _f	1		Q1		1.7			
				Q2		5.2		ns	
DRAIN-SOURCE DIODE CHAI	RACTERISTICS	}							
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	Γ _J = 25 °C	Q1		0.80	1.2		
			_J = 125 °C			0.70		.,	
		V _{GS} = 0 V,	Γ _J = 25 °C	Q2		0.80	1.2	V	
			_J = 125 °C			0.69			
Reverse Recovery Time	t _{RR}			Q1		19			
		$V_{GS} = 0 V$		Q2		35		ns	
Reverse Recovery Charge	Q _{RR}	Q1: $I_S = 15 \text{ A}$, $dI_S/dt = 10$ Q2: $I_S = 29 \text{ A}$, $dI_S/dt = 10$)Ο Α/μS)Ο Α/μs	Q1		6.0		_	
			*	Q2		21		nC	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

6. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$.

7. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS - Q1

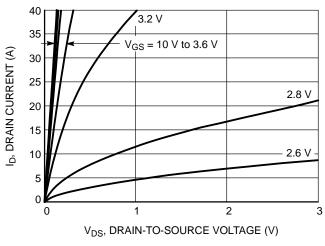
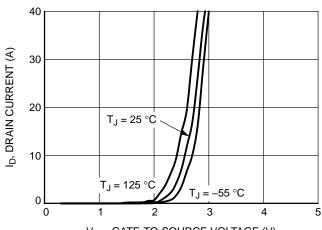



Figure 1. On-Region Characteristics

V_{GS}, GATE-TO-SOURCE VOLTAGE (V)
Figure 2. Transfer Characteristics

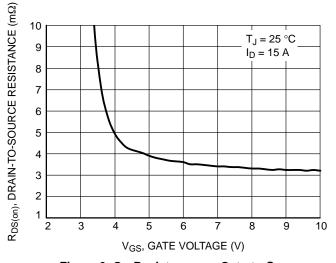


Figure 3. On-Resistance vs. Gate-to-Source Voltage

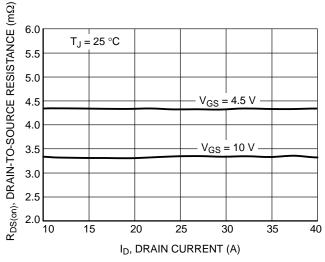


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

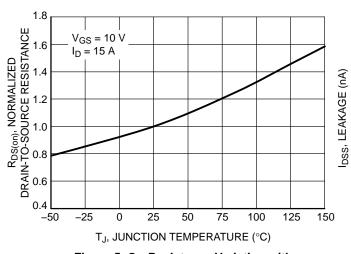


Figure 5. On-Resistance Variation with Temperature

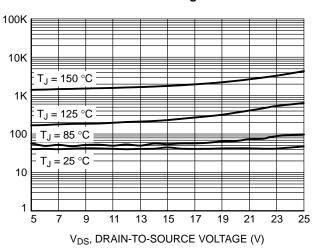


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS - Q1

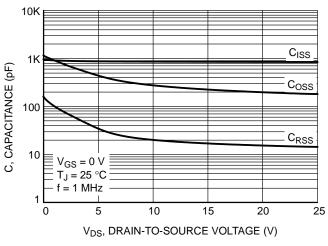


Figure 7. Capacitance Variation

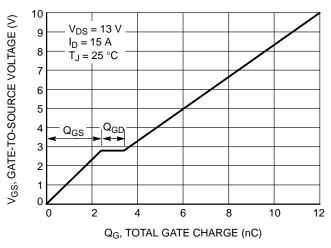


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

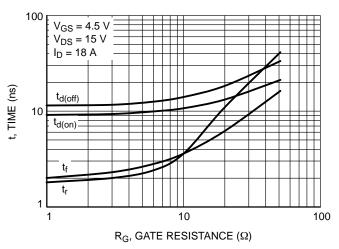


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

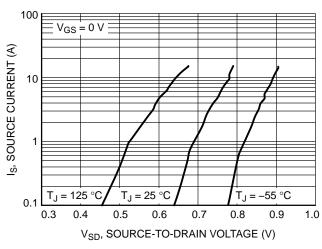


Figure 10. Diode Forward Voltage vs. Current

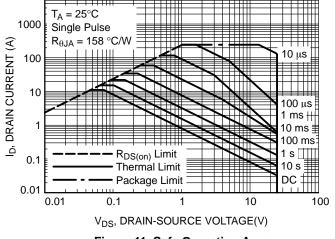


Figure 11. Safe Operating Area

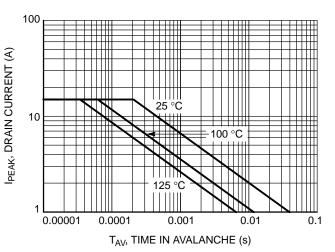


Figure 12. I_{PEAK} vs. Time in Avalanche

TYPICAL CHARACTERISTICS - Q1



Figure 13. Thermal Characteristics

TYPICAL CHARACTERISTICS - Q2

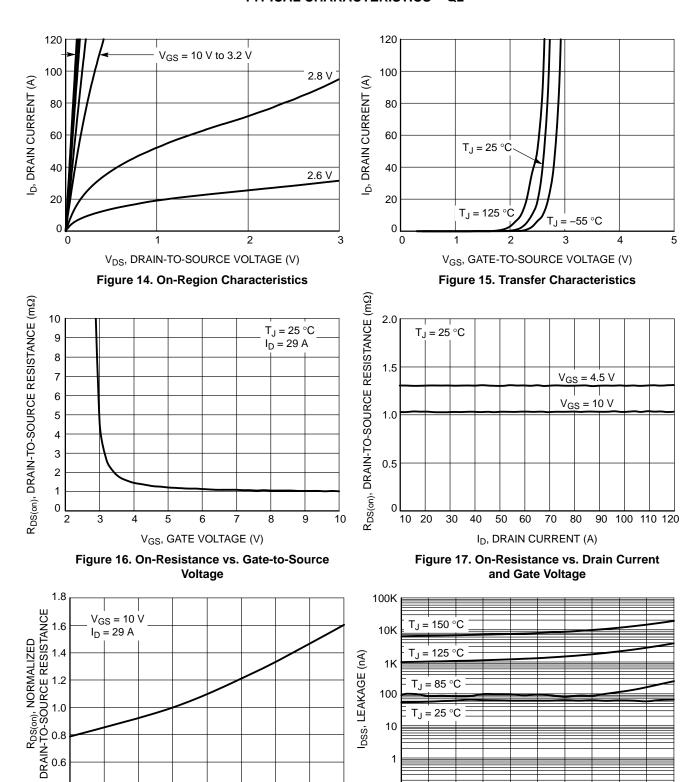


Figure 18. On-Resistance Variation with Temperature

TJ, JUNCTION TEMPERATURE (°C)

50

75

100

125

-50

-25

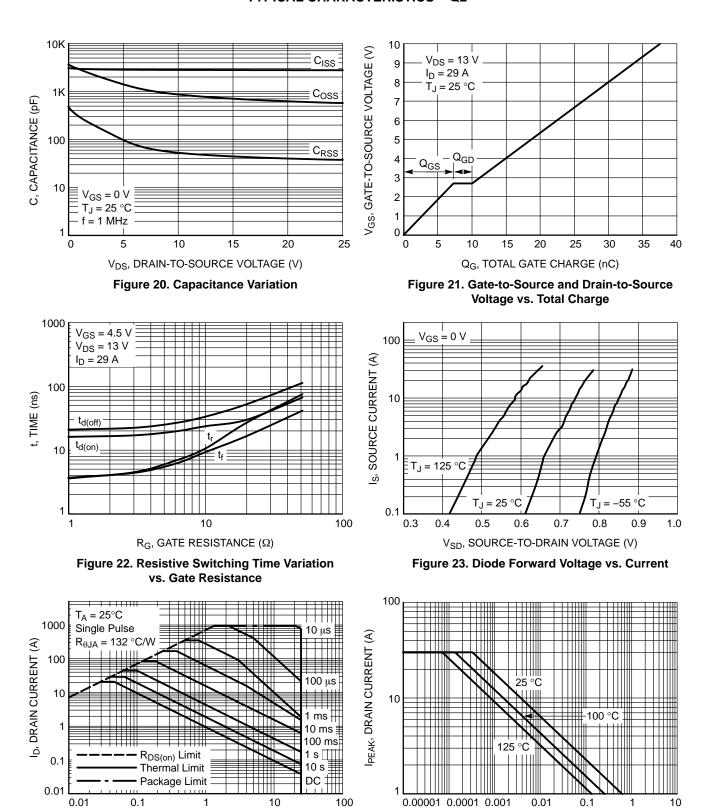
0

25

Figure 19. Drain-to-Source Leakage Current vs. Voltage

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

21


23

13 15

150

0.1

TYPICAL CHARACTERISTICS - Q2

 $\label{eq:TAV} T_{AV}\!\text{, TIME IN AVALANCHE (s)}$ Figure 25. I_{PEAK} vs. Time in Avalanche

V_{DS}, DRAIN-SOURCE VOLTAGE(V)

Figure 24. Safe Operating Area

TYPICAL CHARACTERISTICS - Q2

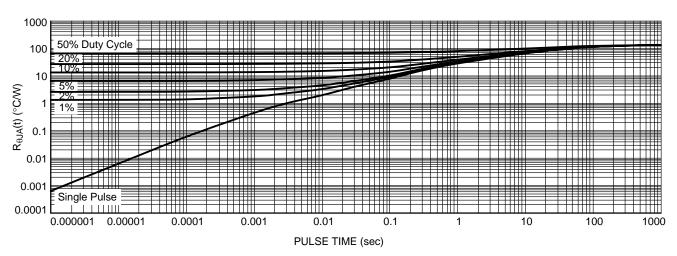


Figure 26. Thermal Characteristics

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

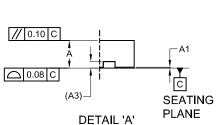
REVISION HISTORY

Revision	Description of Changes	Date
2	Rebranded the Data Sheet to onsemi format.	10/21/2025

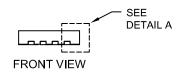
This document has undergone updates prior to the inclusion of this revision history table. The changes tracked here only reflect updates made on the noted approval dates.

0.05 C

PIN #1

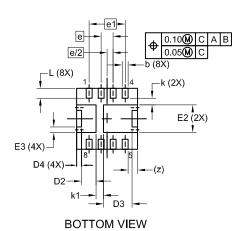

INDICATOR

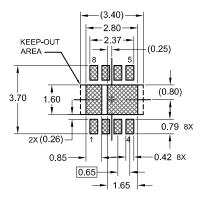
PQFN8 3.3X3.3, 0.65P CASE 483AZ ISSUE B


DATE 14 FEB 2022

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS.
- DIMENSIONS DO NOT INCLUDE BURSS OR MOLD FLASH. MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM.
- 5. SEATING PLANE IS DEFINED BY THE TERMINALS. "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.
- 6. IT IS RECOMMENDED TO HAVE NO TRACES OR VIAS WITHIN THE KEEP OUT AREA.




SCALE 2:1

TOP VIEW

0.05 C

LAND PATTERN
RECOMMENDATION

*FOR ADDITIONAL INFORMATION ON OUR
PB-FREE STRATEGY AND SOLDERING
DETAILS, PLEASE DOWNLOAD THE ON
SEMICONDUCTOR SOLDERING AND
MOUNTING TECHNIQUES REFERENCE
MANUAL, SOLDERRM/D.

DIM	MILLIMETERS					
<i>5</i> ,	MIN	NOM	MAX			
Α	0.70	0.75	0.80			
A1	0.00	1	0.05			
А3	1	0.20 REF				
b	0.27	0.32	0.37			
D	3.20	3.30	3.40			
D2	0.69	0.79	0.89			
D3	1.45	1.55	1.65			
D4	0.16	0,26	0.36			
Е	3.20	3.30	3.40			
E2	1.40	1.60				
E3	-	0.30 REF				
е	U	0.65 BSC				
e1		1.95 BSC				
e/2	0.325 BSC					
k	0.36 REF					
k1		0.40 REF				
L	0.44	0.54	0.64			
z	0.52 REF					

DOCUMENT NUMBER:	98AON13675G	Electronic versions are uncontrolled except when accessed directly from the Document Reportant Versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	PQFN8 3.3X3.3, 0.65P		PAGE 1 OF 1		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales