

MOSFET - Single, N-Channel

100 V, 25 mΩ, 24 A

NTTFD022N10C

General Description

This device includes two specialized N-Channel MOSFETs in a dual package. The switch node has been internally connected to enable easy placement and routing of synchronous buck converters. The control MOSFET (Q2) and synchronous (Q1) have been designed to provide optimal power efficiency.

Features							_	
	-	-			_	_	_	
			ш					

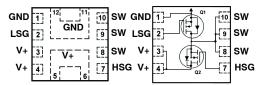
Q1: N-Channel

- Max $r_{DS(on)} = 25 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 7.8 \text{ A}$
- Max $r_{DS(on)} = 61 \text{ m}\Omega$ at $V_{GS} = 6$, $I_D = 3.9 \text{ A}$

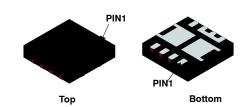
Q2: N-Channel

- Max $r_{DS(on)} = 25 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 7.8 \text{ A}$
- Max $r_{DS(on)} = 61 \text{ m}\Omega$ at $V_{GS} = 6$, $I_D = 3.9 \text{ A}$
- Low Inductance Packaging Shortens Rise/Fall Times, Resulting in Lower Switching Losses
- RoHS Compliant

Applications


- Computing
- Communications
- General Purpose Point of Load

PIN DESCRIPTION


Pin	Name	Description
1, 11, 12	GND (LSS)	Low Side Source
2	LSG	Low Side Gate
3, 4, 5, 6	V + (HSD)	High Side Drain
7	HSG	High Side Gate
8, 9, 10	SW	Switching Node, Low Side Drain

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
100 V	25 mΩ @ 10 V	24 A
100 V	61 mΩ @ 6 V	247

ELECTRICAL CONNECTION

Dual N-Channel MOSFET

Power Clip 33 Symmetric (WQFN12) CASE 510CJ

MARKING DIAGRAM

D022 = Specific Device Code
A = Assembly Plant Code
Y = Numeric Year Code
WW = Work Week Code
ZZ = Assembly Lot Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ORDERING INFORMATION AND PACKAGE MARKING

Device	Marking	Package	Shipping [†]
NTTFD022N10C	D022	WQFN12 (Pb-Free)	3000 Units/ Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MOSFET MAXIMUM RATINGS ($T_A = 25^{\circ}C$, Unless otherwise specified)

Symbol	Parameter		Q1	Q2	Units
V _{DS}	Drain-to-Source Voltage		100	100	V
V_{GS}	Gate-to-Source Voltage		±20	±20	V
I _D	Drain Current –Continuous (Note 4)	T _C = 25°C	24	24	А
	-Continuous (Note 4)	T _C = 100°C	14	14	
	-Continuous	T _A = 25°C	6 (Note 1a)	6 (Note 1b)	
	-Pulsed	T _A = 25°C	349	349	
E _{AS}	Single Pulse Avalanche Energy (L = 3 mH, I _{L(pk)} = 5.1 A)	(Note 3)	39	39	mJ
P_{D}	Power Dissipation for Single Operation	T _C = 25°C	26	26	W
	Power Dissipation for Single Operation	T _A = 25°C	1.7 (Note 1a)	1.7 (Note 1b)	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		–55 to	+150	°C
TL	Lead Temperature for Soldering Purposes (1/8" from case for 10	s)	260	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

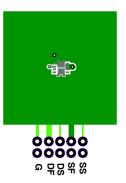
Symbol	Parameter	Q1	Q2	Units
$R_{ heta JC}$	Thermal Resistance, Junction-to-Case	4.8	4.8	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	70 (Note 1a)	70 (Note 1b)	
$R_{ heta JA}$	Thermal Resistance, Junction-to-Ambient	135 (Note 1c)	135 (Note 1c)	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

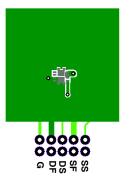
Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
OFF CHAR	ACTERISTICS						
BV _{DSS}	Drain-to-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	Q1	100			V
		$I_D = 250 \mu A, V_{GS} = 0 V$	Q2	100			1
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature	I _D = 250 μA, referenced to 25°C	Q1		80		mV/°C
ΔT_J	T _J Coefficient	I _D = 250 μA, referenced to 25°C	Q2		80		1
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V	Q1			1	μΑ
		V _{DS} = 80 V, V _{GS} = 0 V	Q2			1	
I _{GSS}	Gate-to-Source Leakage Current, Forward	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	Q1			±100	nA
	Forward	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	Q2			±100	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

	Parameter	Test Conditions	Type	Min	Тур	Max	Units
ON CHARA	ACTERISTICS	•			•		•
V _{GS(th)}	Gate-to-Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 44 \mu A$	Q1	2	2.9	4	V
		$V_{GS} = V_{DS}$, $I_D = 44 \mu A$	Q2	2	2.9	4	1
$\Delta V_{GS(th)}$	Gate-to-Source Threshold Voltage	I_D = 44 μ A, referenced to 25°C	Q1		-9.2		mV/°C
ΔT_{J}	Temperature Coefficient	$I_D = 44 \mu A$, referenced to 25°C	Q2		-9.2		1
r _{DS(on)}	Drain-to-Source On Resistance	V _{GS} = 10 V, I _D = 7.8 A	Q1		18.7	25	mΩ
		V _{GS} = 6 V, I _D = 3.9 A			28	61	1
		V _{GS} = 10 V, I _D = 7.8 A, T _J = 125°C			32.6]
r _{DS(on)}	Drain-to-Source On Resistance	V _{GS} = 10 V, I _D = 7.8 A	Q2		18.7	25	mΩ
		V _{GS} = 6 V, I _D = 3.9 A			28	61	1
		$V_{GS} = 10 \text{ V}, I_D = 7.8 \text{ A},$ $T_J = 125^{\circ}\text{C}$			32.6		
9FS	Forward Transconductance	V _{DS} = 5 V, I _D = 7.8 A	Q1		191		s
		V _{DS} = 5 V, I _D = 7.8 A	Q2		191		1
DYNAMIC	CHARACTERISTICS						
C _{ISS}	Input Capacitance	Q1:	Q1		585		pF
		$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ Mhz}$	Q2		585		1
C _{OSS}	Output Capacitance	Q2:	Q1		354		pF
		$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Q2		354		1
C _{RSS}	Reverse Transfer Capacitance		Q1		8		pF
			Q2		8		
R_{G}	Gate Resistance	T _A = 25°C	Q1		1.5		Ω
			Q2		1.5		
SWITCHIN	G CHARACTERISTICS						
td _(ON)	Turn-On Delay Time	Q1:	Q1		8.5		ns
		$V_{DD} = 50 \text{ V}, I_{D} = 7.8 \text{ A},$ $R_{GEN} = 6 \Omega$	Q2		8.5]
t _r	Rise Time	Q2:	Q1		3.2		ns
		$V_{DD} = 50 \text{ V}, I_D = 7.8 \text{ A},$	Q2		3.2]
t _{D(OFF)}	Turn-Off Delay Time	$R_{GEN} = 6 \Omega$	Q1		13.3		ns
			Q2		13.3		
t _f	Fall Time		Q1		4.1		ns
			Q2		4.1		1
Qg	Total Gate Charge	V _{GS} = 0 V to 10 V	Q1		9.0		nC
			Q2		9.0		1
Qg	Total Gate Charge	V _{GS} = 0 V to 6 V	Q1		5.89		nC
		Q1:	Q2		5.89		1
Q _{gs}	Gate-to-Source Gate Charge	$V_{DD} = 50 \text{ V},$	Q1		2.67		nC
5		I _D = 7.8 A Q2:	Q2		2.67		1
	Gate-to-Drain "Miller" Charge	$V_{DD} = 50 \text{ V},$ $I_{D} = 7.8 \text{ A}$	Q1		2.0		nC
Q_{gd}	Gate-to-Dialii Miller Charge						

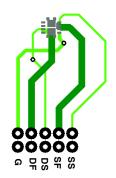

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Type	Min	Тур	Max	Units
DRAIN-SC	URCE DIODE CHARACTERISTICS						
V _{SD}	Source-to-Drain Diode Forward	V _{GS} = 0 V, I _S = 7.8 A (Note 2)	Q1		0.82	1.5	V
	Voltage	V _{GS} = 0 V, I _S = 7.8 A (Note 2)	Q2		0.82	1.5	1
t _{rr}	Reverse Recovery Time	Q1:	Q1		33		ns
		$I_F = 7.8 \text{ A, di/dt} = 300 \text{ A/}\mu\text{s}$ Q2: $I_F = 7.8 \text{ A, di/dt} = 300 \text{ A/}\mu\text{s}$	Q2		33		
Q _{rr}	Reverse Recovery Charge		Q1		35		nC
			Q2		35		
t _{rr}	Reverse Recovery Time	Q1:	Q1		14		ns
		I _F = 7.8 A, di/dt = 1000 A/μs Q2: I _F = 7.8 A, di/dt = 1000 A/μs	Q2		14		1
Q _{rr}	Reverse Recovery Charge		Q1		91		nC
			Q2		91		


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 \times 1.5 in. board of FR-4 material. $R_{\theta CA}$ is determined by the user's board design.


a) 70°C/W when mounted on a 1 in² pad of 2 oz copper.

b) 70°C/W when mounted on a 1 in² pad of 2 oz copper.

c) 135°C/W when mounted on a minimum pad of 2 oz copper.

d) 135°C/W when mounted on a minimum pad of 2 oz copper.

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.
- Q1: E_{AS} of 39 mJ is based on starting T_J = 25°C; N-ch: L = 3 mH, I_{AS} = 5.1 A, V_{DD} = 80 V, V_{GS} = 10 V. 100% test at L = 3 mH, I_{AS} = 5.3 A. Q2: E_{AS} of 39 mJ is based on starting T_J = 25°C; N-ch: L = 3 mH, I_{AS} = 5.1 A, V_{DD} = 80 V, V_{GS} = 10 V. 100% test at L = 3 mH, I_{AS} = 5.3 A.
 Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal
- & electro-mechanical application board design.

TYPICAL CHARACTERISTICS

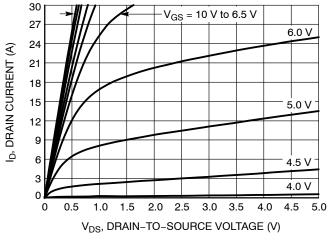


Figure 1. On-Region Characteristics

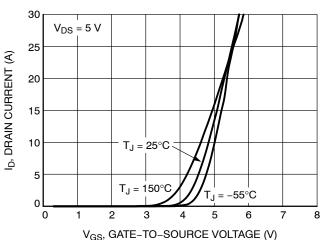


Figure 2. Transfer Characteristics

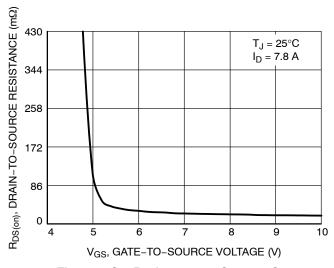


Figure 3. On-Resistance vs. Gate-to-Source Voltage

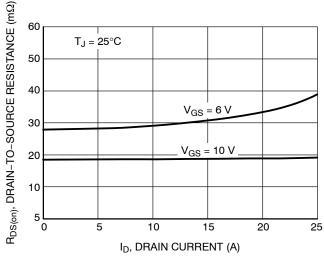


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

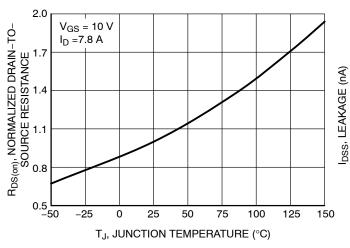


Figure 5. On–Resistance Variation with Temperature

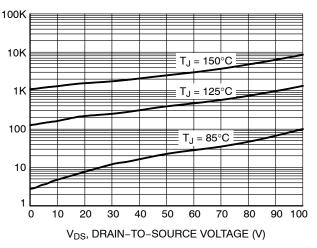


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

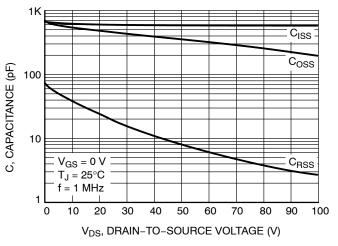


Figure 7. Capacitance Variation

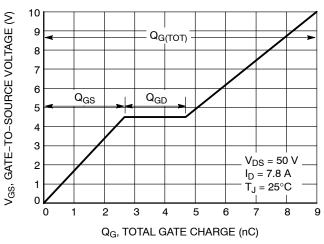


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

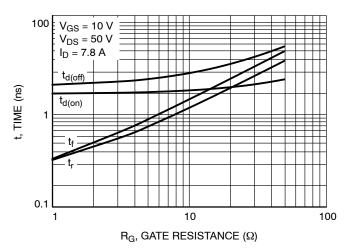


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

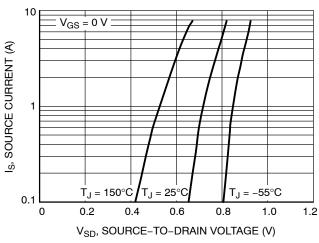


Figure 10. Diode Forward Voltage vs. Current

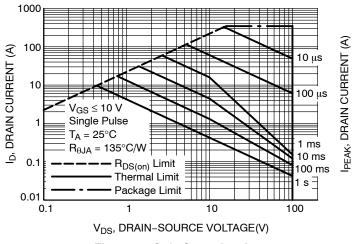


Figure 11. Safe Operating Area

Figure 12. I_{PEAK} vs. Time in Avalanche

TYPICAL CHARACTERISTICS

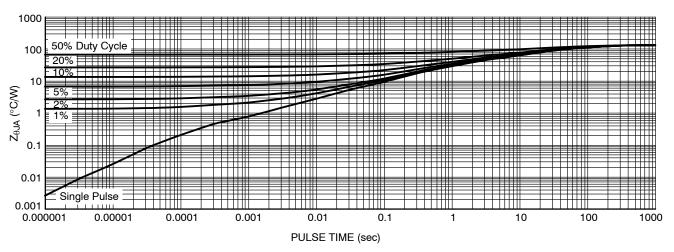
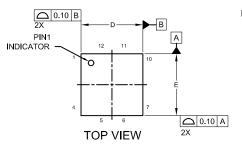
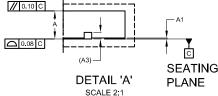


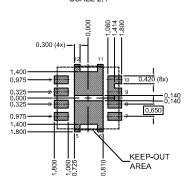
Figure 13. Thermal Characteristics



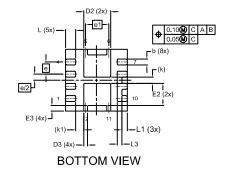
WQFN12 3.3X3.3, 0.65P

CASE 510CJ ISSUE A


DATE 08 AUG 2022



NOTES:


- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. COPLANARITY APPLIES TO THE EXPOSED
- 4. SEATING PLANE IS DEFINED BY THE TERMINALS. "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.
- 5. IT IS RECOMMENDED TO HAVE NO TRACES OR VIAS WITHIN THE KEEP OUT AREA.

MILLIMETERS DIM MIN NOM MAX 0.70 0.75 08.0 Α 0.00 Α1 0.05 А3 0.20 REF 0.27 0.32 0.37 b D 3.20 3.30 3.40 D2 1.54 1.34 1.44 D3 0.10 0.20 0.30 Ε 3.20 3.30 3.40 E2 1.09 1.19 1.29 E3 0.20 0.30 0.40 0.65 BSC е e/2 0.325 BSC 1.24 BSC e1 k 0.33 REF k1 0.43 REF L 0.44 0.54 0.64 0.19 L1 0.29 0.39 L3 0.15 0.25 0.35

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code

A = Assembly Location

Y = Year WW = Work Week

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

LAND PATTERN
RECOMMENDATION
*FOR ADDITIONAL INFORMATION ON OUR
PB-FREE STRATEGY AND SOLDERING
DETAILS, PLEASE DOWNLOAD THE ON
SEMICONDUCTOR SOLDERING AND
MOUNTING TECHNIQUES REFERENCE
MANUAL, SOLDERRM/D.

DOCUMENT NUMBER:	98AON13806G	Electronic versions are uncontrolled except when accessed directly from the Document Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	WQFN12 3.3X3.3, 0.65P		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales