FETKY[™] Power MOSFET and Schottky Diode

-20 V, -3.3 A P-Channel with 20 V, 1.0 A Schottky Diode, Micro8[™] Package

The FETKY product family incorporates low $R_{DS(on)}$, true logic level MOSFETs packaged with industry leading, low forward drop, low leakage Schottky Barrier Diodes to offer high efficiency components in a space saving configuration. Independent pinouts for TMOS and Schottky die allow the flexibility to use a single component for switching and rectification functions in a wide variety of applications.

Features

- Low V_F and Low Leakage Schottky Diode
- Lower Component Placement and Inventory Costs along with Board Space Savings
- Logic Level Gate Drive Can be Driven by Logic ICs
- Pb–Free Package is Available

Applications

- Buck Converter
- Synchronous Rectification
- Low Voltage Motor Control
- Load Management in Battery Packs, Chargers, Cell Phones, and other Portable Products

MOSFET MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

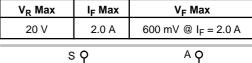
D-1			0	Malaa	11
Rat	ing		Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	-20	V
Gate-to-Source Voltage			V _{GS}	±10	V
Continuous Drain		$T_A = 25^{\circ}C$	I _D	-3.3	А
Current (Note 1)		T _A = 100°C		-2.1	
Power Dissipation (Note 1)	Steady State	T _A = 25°C	PD	1.42	W
Continuous Drain	T _A = 25°C		I _D	-2.4	А
Current (Note 2)		$T_A = 100^{\circ}C$		-1.5	
Power Dissipation (Note 2)	Steady State	T _A = 25°C	PD	0.78	W
Pulsed Drain Current	t = 10 μs		I _{DM}	-10	A
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C
Single Pulse Drain–to–Source Avalanche Energy Starting T_A = 25°C (t \leq 10 s)			EAS	150	mJ
Lead Temperature for (1/8" from case for		Purposes	ΤL	260	°C

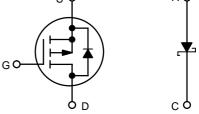
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Surface-mounted on FR4 board using 1 in sq pad size

(Cu area = 1.127 in sq [1 oz] including traces).

 Surface-mounted on FR4 board using the minimum recommended pad size (Cu area = 0.172 in sq).

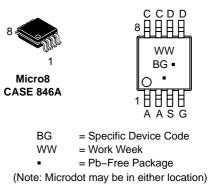

ON Semiconductor®


http://onsemi.com

MOSFET PRODUCT SUMMARY

V _{(BR)DSS}	R _{DS(on)} Typ	I _D Max
-20 V	70 mΩ @ –4.5 V	–3.3 A
201	100 mΩ @ –2.7 V	–2.7 A

SCHOTTKY DIODE SUMMARY



P-Channel MOSFET

Schottky Diode

ORDERING INFORMATION

Device	Package	Shipping [†]
NTTD4401FR2	Micro8	4000/Tape & Reel
NTTD4401FR2G	Micro8 (Pb–Free)	4000/Tape & Reel

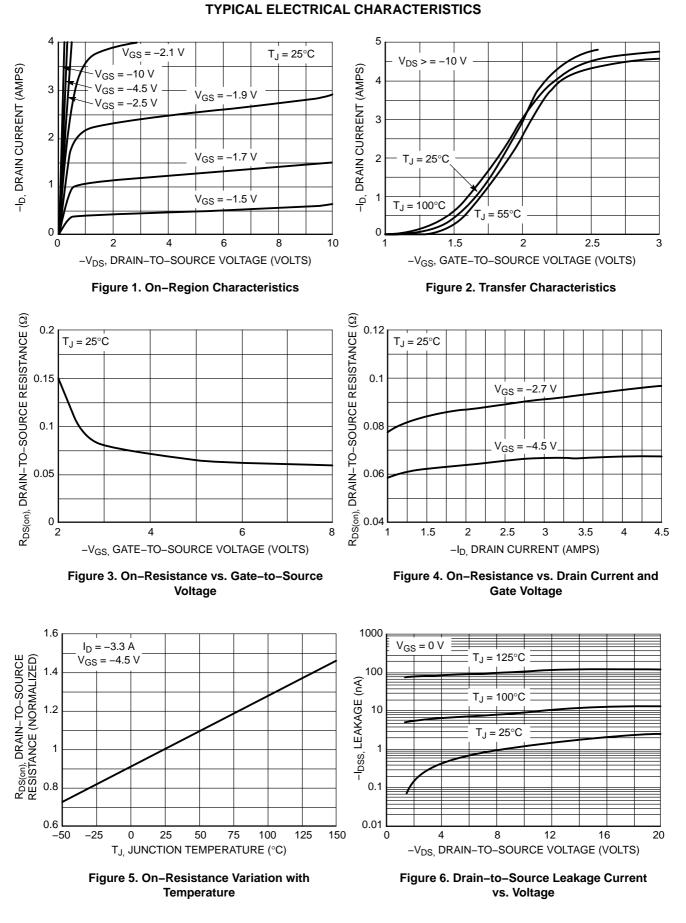
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

SCHOTTKY DIODE MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage	V	20	V
Average Forward Current (Rated V_R , $T_A = 100^{\circ}C$)	۱ ₀	1.0	A
Peak Repetitive Forward Current (Note 3)	I _{FRM}	2.0	A
Non-Repetitive Peak Surge Current (Note 4)	I _{FSM}	20	A

THERMAL RESISTANCE RATINGS

		FET	Schottky	
Rating	Symbol	Max		Unit
Junction-to-Ambient - Steady State (Note 5)	$R_{ hetaJA}$	88	135	°C/W
Junction-to-Ambient - Steady State (Note 6)	$R_{ hetaJA}$	160	250	°C/W


MOSFET ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V	-20	_	-	V
Zero Gate Voltage Drain Current (Note 7)	I _{DSS}	$V_{GS} = 0 V, V_{DS} = -16 V$	_	-	-1.0	μΑ
		$V_{GS} = 0 \text{ V}, \text{ T}_{\text{J}} = 125^{\circ}\text{C}, \text{ V}_{\text{DS}} = -16 \text{ V}$	-	-	-25	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 10 V$	_	-	±100	nA
ON CHARACTERISTICS						
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = -250 \ \mu A$	-0.5	-	-1.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	_	-	2.5	-	mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V_{GS} = -4.5 V, I _D = -3.3 A	_	70	90	mΩ
		$V_{GS} = -2.5 \text{ V}, \text{ I}_{D} = -1.2 \text{ A}$	_	100	150	
Forward Transconductance	9 FS	$V_{DS} = -10 \text{ V}, \text{ I}_{D} = -2.7 \text{ A}$	_	4.2	-	S
CHARGES, CAPACITANCES AND GATE	RESISTANCE					
Input Capacitance	C _{ISS}		-	550	750	pF
Output Capacitance	C _{OSS}	$V_{GS} = 0 V, f = 1.0 MHz, V_{DS} = -16 V$	_	200	300	1
Reverse Transfer Capacitance	C _{RSS}		_	50	175	
Total Gate Charge	Q _{G(TOT)}		_	10	18	nC
Gate-to-Source Gate Charge	Q _{GS}	$V_{GS} = -4.5 \text{ V}, V_{DS} = -16 \text{ V},$ $I_{D} = -3.3 \text{ A}$	_	1.5	3.0	-
Gate-to-Drain "Miller" Charge	Q _{GD}		_	5.0	10	
SWITCHING CHARACTERISTICS						
Turn–On Delay Time	t _{d(ON)}		_	11	20	ns
Rise Time	t _r	$V_{GS} = -4.5 \text{ V}$. $V_{DD} = -10 \text{ V}$.	_	35	65	
Turn-Off Delay Time	t _{d(OFF)}	$V_{GS} = -4.5 \text{ V}, V_{DD} = -10 \text{ V},$ $I_{D} = -3.3 \text{ A}, R_{G} = 6.0 \Omega$	_	33	60	
Fall Time	t _f		_	29	55	
DRAIN-SOURCE DIODE CHARACTERIS	FICS					
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V, I_{S} = -2.0 A$	-	-0.88	-1.0	V
Reverse Recovery Time	t _{RR}		-	37	50	ns
Charge Time	t _a	$V_{GS} = 0 V$, $d_{IS}/dt = 100 A/\mu s$, $I_{S} = -3.3 A$	_	16	-	1
Discharge Time	t _b		-	21	-	1
Reverse Recovery Charge	Q _{RR}	_	-	0.025	0.05	nC

Rated V_R, square wave, 20 kHz, T_A = 105°C.
 Surge applied at rated load conditions, half-wave, single phase, 60 Hz.
 Surface-mounted on FR4 board using 1 inch sq pad size (Cu area = 1.127 in sq [1 oz] including traces).
 Surface-mounted on FR4 board using the minimum recommended pad size (Cu area = 0.172 in sq).
 Body diode leakage current.

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Characteristic	Symbol	Test Condition		Min	Тур	Max	Unit
Reverse Breakdown Voltage	rse Breakdown Voltage B _V I _R = 1.0 mA		mA	20	-	-	V
Reverse Leakage Current	۱ _R	N 00 M	$T_A = 25^{\circ}C$	-	-	0.05	mA
		V _R = 20 V	T _A = 125°C	-	-	10	
Forward Voltage	V _F	1 101	$T_A = 25^{\circ}C$	-	-	0.5	V
		I _F = 1.0 A	T _A = 125°C	-	-	0.39	
		1 004	$T_A = 25^{\circ}C$	-	-	0.6	
		I _F = 2.0 A	T _A = 125°C	-	-	0.53	1
Voltage Rate of Change	dV/dt	V _R = 20 V		-	10,000	-	V/μs

vs. Current

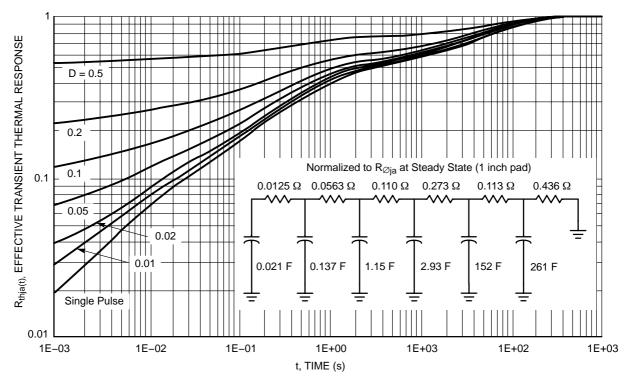
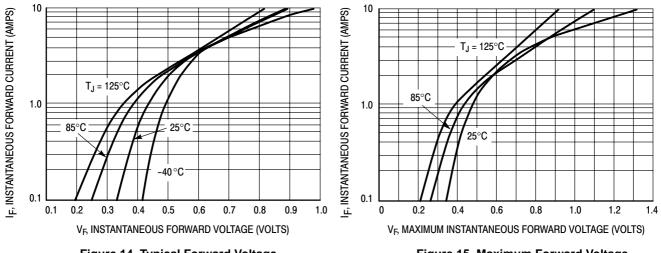



Figure 13. FET Thermal Response

TYPICAL SCHOTTKY ELECTRICAL CHARACTERISTICS

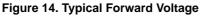
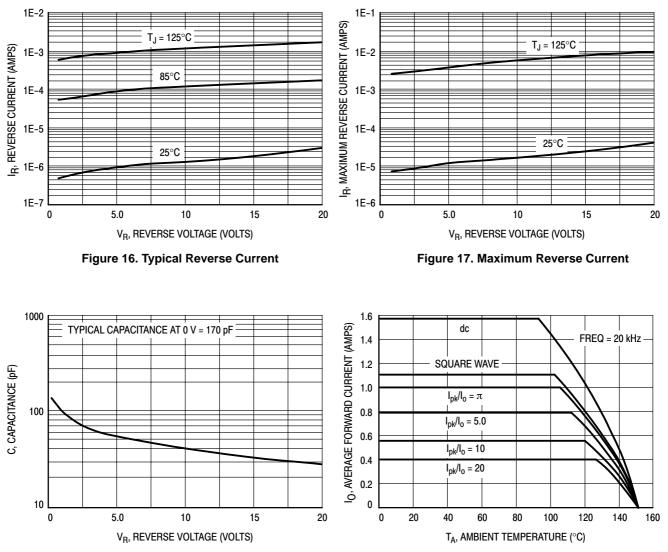



Figure 15. Maximum Forward Voltage

TYPICAL SCHOTTKY ELECTRICAL CHARACTERISTICS

Figure 18. Typical Capacitance

Figure 19. Current Derating

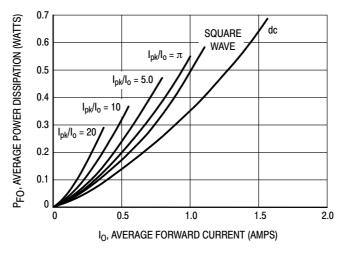
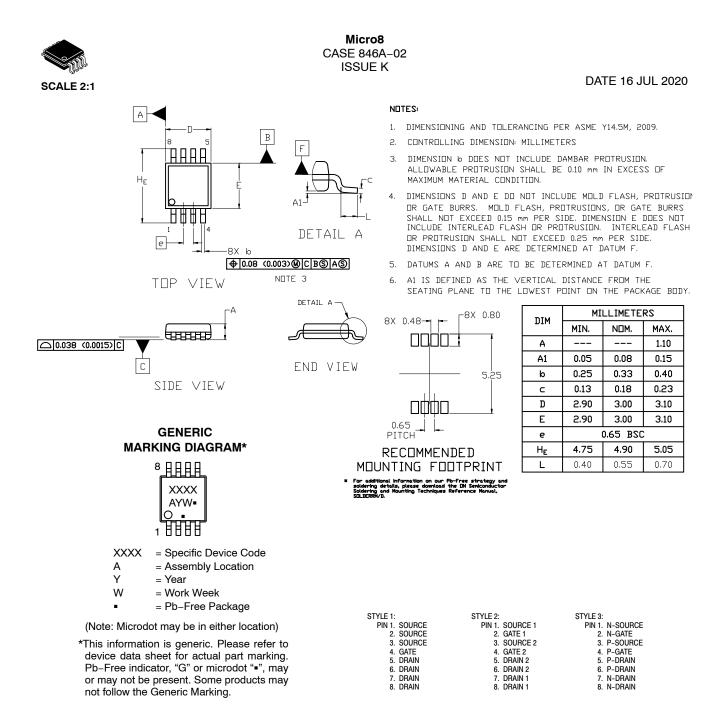



Figure 20. Forward Power Dissipation

FETKY and Micro8 are registered trademarks of International Rectifier Corporation.

onsemi

 DOCUMENT NUMBER:
 98ASB14087C
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 MICRO8
 PAGE 1 OF 1

 onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>