MOSFET - Single, N-Channel, Small Signal, ESD Protection, SC-70/SOT-323 25 V, 0.75 A

Features

- Advance Planar Technology for Fast Switching, Low R_{DS(on)}
- Higher Efficiency Extending Battery Life
- AEC-Q101 Qualified and PPAP Capable NVS4409N
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Boost and Buck Converter
- Load Switch
- Battery Protection

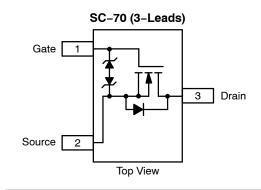
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Ratin	Symbol	Value	Unit		
Drain-to-Source Voltage			V _{DSS}	25	V
Gate-to-Source Voltage			V _{GS}	±8.0	V
Drain Current	t < 5 s	T _A = 25°C	I _D	0.75	Α
Continuous Drain Current	Steady	Steady T _A = 25°C		0.7	Α
(Note 1)	State	T _A = 75°C		0.6	
Power Dissipation (Note 1)	Stead	dy State	P _D	0.28	W
Power Dissipation (Note 1)	t s	≤ 5 s	P_{D}	0.33	W
Pulsed Drain Current	t _p =	10 μs	I _{DM}	3.0	Α
Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to +150	°C
Source Current (Body Dioc	Is	0.3	Α		
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C
ESD Rating - Machine Mo		25	V		

THERMAL RESISTANCE RATINGS

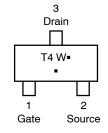
Rating	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	450	°C/W
Junction-to-Ambient - t ≤ 5 s (Note 1)	$R_{\theta JA}$	375	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


1. Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).

ON Semiconductor®

http://onsemi.com


V _{(BR)DSS}	(BR)DSS R _{DS(on)} Typ		
25 V	249 m Ω @ 4.5 V	0.75 A	
	299 mΩ @ 2.7 V	0.75 A	

MARKING DIAGRAM & PIN ASSIGNMENT

SC-70/SOT-323 CASE 419 STYLE 8

T4 = Device Code W = Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]		
NTS4409NT1G	SOT-323 (Pb-Free)	3000 / Tape & Reel		
NVS4409NT1G	SOT-323 (Pb-Free)	3000 / Tape & Reel		

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Characteristic	Symbol	Test Con	dition	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•		•		•	•	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		25			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				30		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}		T _J = 25°C			0.5	μΑ
		$V_{GS} = 0 V$, $V_{DS} = 20 V$	T _J = 70°C			2.0	7
		103 =01	T _J = 125°C			5.0	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{C}$	_{SS} = 8.0 V			100	nA
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I _D	= 250 μΑ	0.65		1.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-2.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 4.5 V, I _D = 0.6 A			249	350	mΩ
		$V_{GS} = 2.7 V$,	I _D = 0.2 A		299	400	
		$V_{GS} = 4.5 V,$	I _D = 1.2 A		260		
Forward Transconductance	9FS	$V_{DS} = 5.0 V,$	I _D = 0.5 A		0.5		S
CHARGES AND CAPACITANCES							-
Input Capacitance	C _{ISS}				49	60	pF
Output Capacitance	C _{OSS}	$V_{GS} = 0 \text{ V, f} = V_{DS} = 1$			22.4	30	
Reverse Transfer Capacitance	C _{RSS}	• 03 – .	Ĭ		8.0	12	
Total Gate Charge	Q _{G(TOT)}				1.2	1.5	nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V, V	ns = 15 V,		0.2		
Gate-to-Source Charge	Q_{GS}	$I_D = 0.8$	BA		0.28	0.50	
Gate-to-Drain Charge	Q_{GD}				0.3	0.40	
SWITCHING CHARACTERISTICS (No	te 3)					•	
Turn-On Delay Time	t _{d(ON)}				5.0	12	ns
Rise Time	t _r	V_{GS} = 4.5 V, V_{DS} = 15 V, I_{D} = 0.7 A, R_{G} = 51 Ω			8.2	8.0	
Turn-Off Delay Time	t _{d(OFF)}				23	35	
Fall Time	t _f				41	60	
DRAIN-SOURCE DIODE CHARACTE	RISTICS		•		-	-	•
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 0.6 A	T _J = 25°C		0.82	1.20	V

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

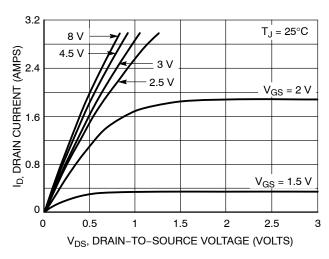


Figure 1. On-Region Characteristics

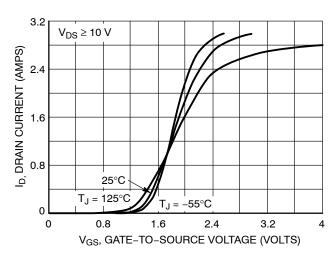


Figure 2. Transfer Characteristics

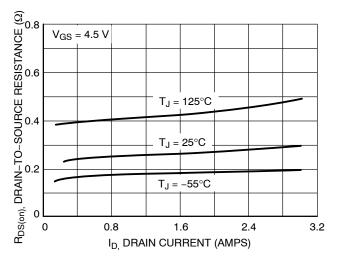


Figure 3. On-Resistance vs. Drain Current and Temperature

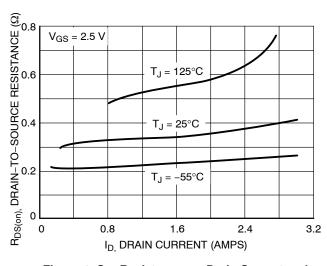


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

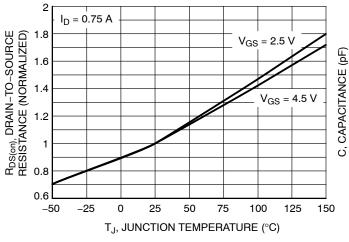


Figure 5. On–Resistance Variation with Temperature

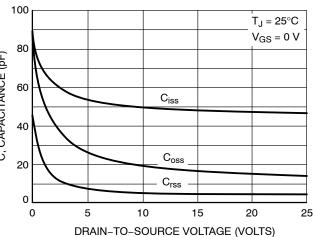


Figure 6. Capacitance Variation

TYPICAL PERFORMANCE CURVES ($T_J = 25^{\circ}$ C unless otherwise noted)

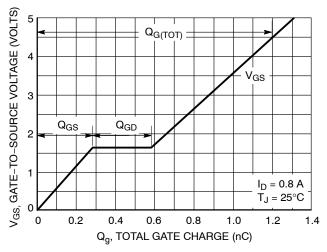


Figure 7. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

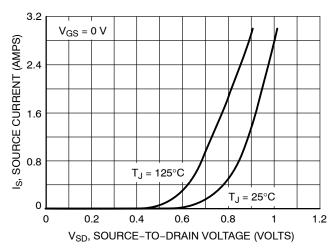
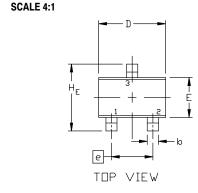
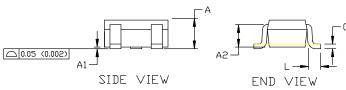


Figure 8. Diode Forward Voltage vs. Current


SC-70 (SOT-323) CASE 419 ISSUE R

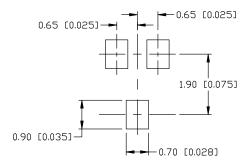

DATE 11 OCT 2022

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH

	MILLIMETERS			INCHES			
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.	
Α	0.80	0.90	1.00	0.032	0.035	0.040	
A1	0.00	0.05	0.10	0.000	0.002	0.004	
A2		0.70 REF	-		0.028 BS	C	
b	0.30	0.35	0.40	0.012	0.014	0.016	
С	0.10	0.18	0.25	0.004	0.007	0.010	
D	1.80	2.00	2.20	0.071	0.080	0.087	
E	1.15	1.24	1.35	0.045	0.049	0.053	
е	1.20	1.30	1.40	0.047	0.051	0.055	
e1	0.65 BSC			0.026 BS	C		
L	0.20	0.38	0.56	0.008	0.015	0.022	
HE	2.00	2.10	2.40	0.079	0.083	0.095	

GENERIC MARKING DIAGRAM



XX = Specific Device Code

M = Date Code

■ = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

For additional information on our Pb-Free strategy and soldering details, please download the IIN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

SOLDERING FOOTPRINT

STYLE 1: CANCELLED	STYLE 2: PIN 1. ANODE 2. N.C. 3. CATHODE	STYLE 3: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. CATHODE	
STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	STYLE 10:	STYLE 11:
PIN 1. EMITTER	PIN 1. BASE	PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. CATHODE
2. BASE	2. EMITTER	2. SOURCE	2. CATHODE	2. ANODE	CATHODE
COLLECTOR	COLLECTOR	3. DRAIN	CATHODE-ANODE	3. ANODE-CATHODE	CATHODE

DOCUMENT NUMBER:	98ASB42819B	PB Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-70 (SOT-323)		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales