

MOSFET - Power, Single N-Channel, DUAL COOL®, DFN8 5x6

40 V, 0.40 mΩ, 540 A

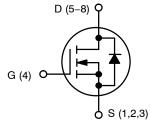
NTMFSCHOD4N04XM

Features

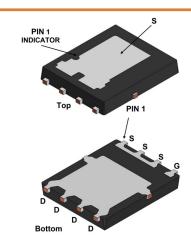
- Advanced Dual-Side Cool Package with Enhanced Heat Dissipation Molding Compound
- Soft Recovery Body Diode
- Ultra Low R_{DS(on)} Optimization to Minimize Conduction Losses
- Low Qg to Minimize Gate Driving Losses
- MSL1 Robust Packaging Design
- These Devices are Pb-Free, Halogen Free, BFR Free and are RoHS Compliant

Applications

- Motor Drive
- Battery Management System Protection
- ORing

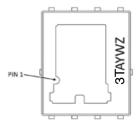

MAXIMUM RATINGS (T_J = 25 °C unless otherwise noted)

Parameter	Symbol	Value	Unit	
Drain-to-Source Voltage	V _{DSS}	40	V	
Gate-to-Source Voltage		V _{GS}	±20	V
Continuous Drain Current			540	Α
(Notes 1, 2)	T _C = 100 °C		382	
Power Dissipation (Notes 1, 2)	T _C = 25 °C	P _D	208	W
Pulsed Drain Current	T _C = 25 °C,	I _{DM}	1664	Α
Pulsed Source Current (Body Diode)	t _p = 100 μs	I _{SM}	1664	
Operating Junction and Storage T Range	T _J , T _{stg}	-55 to +175	°C	
Source Current (Body Diode) T _C = 25 °C		Is	234	Α
Single Pulse Avalanche Energy (I _{PK} = 116 A)	E _{AS}	807	mJ	
Lead Temperature for Soldering P (1/8" from case for 10 s)	TL	260	°C	


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- The entire application environment impacts the thermal resistance values shown. They are not constants and are only valid for the particular conditions noted.
- Actual continuous current will be limited by thermal and electromechanical application board design.
- 3. EAS of 807 mJ is based on started T_J = 25 °C, I_{AS} = 116 A, V_{DD} = 32 V, V_{GS} = 10 V, 100% avalanche tested.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
40 V	0.40 mΩ @ 10 V	540 A



N-CHANNEL MOSFET

DFN8 5x6 CASE 506FF

MARKING DIAGRAM

3T = Specific Device Code A = Assembly Location

Y = Year

W = Work WeekZ = Assembly Lot Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

THERMAL CHARACTERISTICS

Parameter	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case (Bottom)	$R_{\theta JCB}$	0.72	°C/W
Thermal Resistance, Junction-to-Case (Top)	$R_{ heta JCT}$	0.78	
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	39	

ELECTRICAL CHARACTERISTICS (T_J = 25 °C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS				•		
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μA	40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	$\frac{\Delta V_{(BR)DSS}}{\Delta T_J}$	I_D = 1 mA, ref to 25 °C		8.8		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V}, V_{DS} = 40 \text{ V}, T_{J} = 25 ^{\circ}\text{C}$			10	μΑ
		V _{GS} = 0 V, V _{DS} = 40 V, T _J = 125 °C			100	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = 20 V			100	nA
ON CHARACTERISTICS						
Drain-to-Source On Resistance	R _{DS(on)}	V_{GS} = 10 V, I_D = 30 A, T_J = 25 °C		0.31	0.40	mΩ
		V_{GS} = 7 V, I_D = 30 A, T_J = 25 °C		0.42	0.62	
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 350 \mu A, T_J = 25 ^{\circ} C$	2.5		3.5	V
Gate Threshold Voltage Temperature Coefficient	$\frac{\Delta V_{GS(TH)}^{}}{\Delta^{T}J}$	$V_{GS} = V_{DS}, I_D = 350 \mu A$		-7.3		mV/°C
Forward Transconductance	9FS	V _{DS} = 5 V, I _D = 30 A		191		S
CHARGES, CAPACITANCES & GATE	RESISTANCE					-
Input Capacitance	C _{ISS}	$V_{GS} = 0 \text{ V, f} = 1 \text{ MHz, } V_{DS} = 20 \text{ V}$		9126		pF
Output Capacitance	C _{OSS}			6475		7
Reverse Transfer Capacitance	C _{RSS}			131		
Output Charge	Q _{OSS}			195		nC
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 7 \text{ V}, V_{DD} = 20 \text{ V}, I_D = 30 \text{ A}$		110		
		V _{GS} = 10 V, V _{DD} = 20 V, I _D = 30 A		151		
Threshold Gate Charge	Q _{G(TH)}			29		
Gate-to-Source Charge	Q_{GS}			47		
Gate-to-Drain Charge	Q_{GD}			33		
Gate Plateau Voltage	V_{GP}			4.7		V
Gate Resistance	R_{G}	f = 1 MHz		0.36		Ω
SWITCHING CHARACTERISTICS						-
Turn-On Delay Time	t _{d(ON)}	Resistive Load,		40		ns
Rise Time	t _r	$V_{GS} = 0/10 \text{ V}, V_{DD} = 20 \text{ V},$ $I_D = 30 \text{ A}, R_G = 2.5 \Omega$		15		7
Turn-Off Delay Time	t _{d(OFF)}	- ~		67		7
Fall Time	t _f			15		1
SOURCE-TO-DRAIN DIODE CHARAC	TERISTICS					
Forward Diode Voltage	V_{SD}	V_{GS} = 0 V, I_S = 30 A, T_J = 25 °C		0.77	1.2	V
		V _{GS} = 0 V, I _S = 30 A, T _J = 125 °C		0.61		

ELECTRICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise noted) (continued)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } dI/dt = 100 \text{ A/}\mu\text{s,}$		108		ns
Charge Time	ta	I _S = 30 A, V _{DD} = 20 V		57		
Discharge Time	t _b			52		
Reverse Recovery Charge	Q _{RR}			214		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

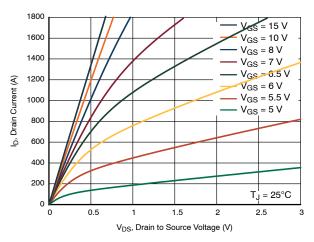


Figure 1. On-Region Characteristics

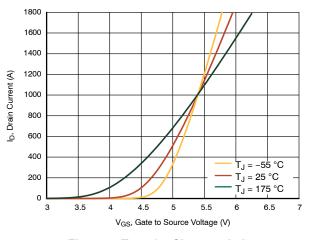


Figure 2. Transfer Characteristics

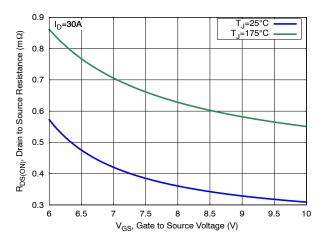


Figure 3. On-Resistance vs. Gate Voltage

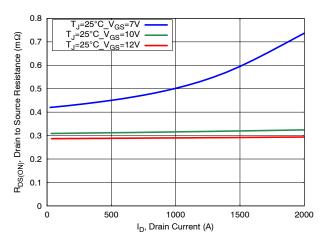


Figure 4. On-Resistance vs. Drain Current

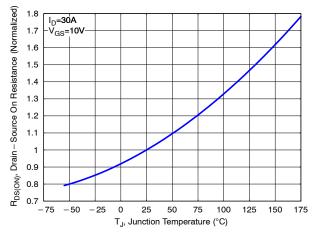


Figure 5. Normalized ON Resistance vs. Junction Temperature

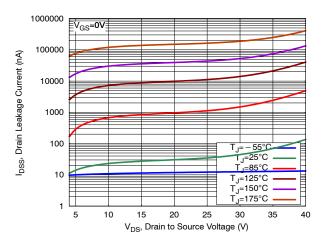


Figure 6. Drain Leakage Current vs Drain Voltage

TYPICAL CHARACTERISTICS

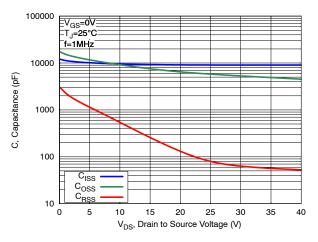


Figure 7. Capacitance Characteristics

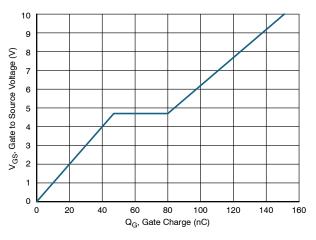


Figure 8. Gate Charge Characteristics

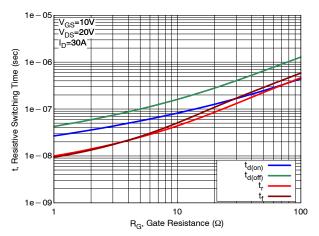


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

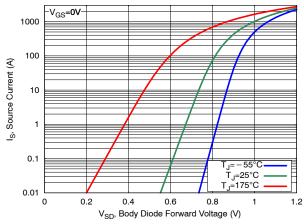


Figure 10. Diode Forward Characteristics

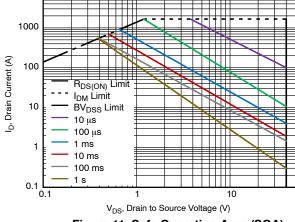


Figure 11. Safe Operating Area (SOA)

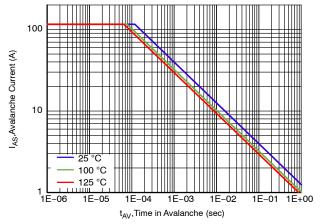


Figure 12. Avalanche Current vs Pulse Time (UIS)

TYPICAL CHARACTERISTICS

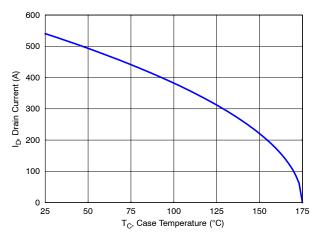


Figure 13. Maximum Current vs. Case Temperature

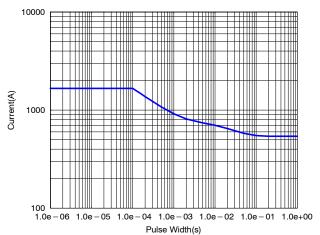


Figure 14. IDM vs. Pulse Width

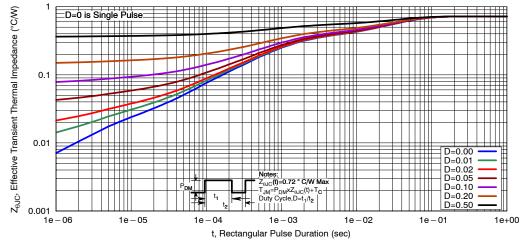


Figure 15. Transient Thermal Response

ORDERING INFORMATION

Device	Device Marking	Package	Shipping [†]
NTMFSCH0D4N04XMTWG	ЗТ	DFN8 5x6 (Pb-Free/Halogen Free)	3000 / Tape & Reel

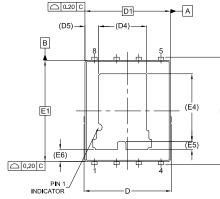
[†] For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

DUAL COOL is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

REVISION HISTORY

Revision	Description of Changes	Date
1	Final version release.	08/18/2025

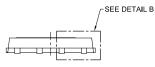
This document has undergone updates prior to the inclusion of this revision history table. The changes tracked here only reflect updates made on the noted approval dates.



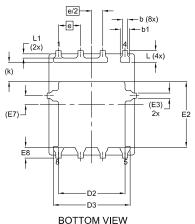
DFN8 4.90x5.80x0.90, 1.27P

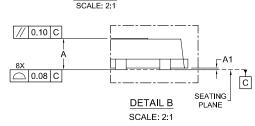
CASE 506FF ISSUE D


DATE 21 MAR 2025


SEE DETAIL A SIDE VIEW

(A3)-

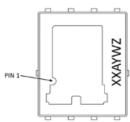



LAND PATTERN RECOMMENDATION

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

FRONT VIEW

NOTES:


1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.

DETAIL A

- CONTROLLING DIMENSION: MILLIMETERS
- COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS.
- DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
- SEATING PLANE IS DEFINED BY THE TERMINALS. "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

	•			
DIM	MILLIMETERS			
Diwi	MIN.	NOM.	MAX.	
Α	0.85	0.90	0.95	
A1	-	-	0.05	
А3		0.25 REF		
b	0.21	0.31	0.41	
b1	0.44	0.54	0.64	
D	4.90	5.00	5.10	
D1	4	4.90 BSC	;	
D2	3.72	3.82	3.92	
D3	4.30	4.40	4.50	
D4	2.75 REF			
D5	0.79 REF			
Е	6.05	6.15	6.25	
E1	5.80 BSC			
E2	3.67	3.77	3.87	
E3	0.30 REF			
E4	3.89 REF			
E5		0.45 REF		
E6	0.69 REF			
E7	(0.50 REF		
E8	0.52	0.62		
е	1.27 BSC			
e/2	0.635BSC			
k	1.10 REF			
L	0.56	0.66	0.76	
L1	0.15	0.25	0.35	
θ	0°		7°	

GENERIC MARKING DIAGRAM*

= Specific Device Code

= Assembly Location Α

= Year

Υ

Ζ

W = Work Week

= Assembly Lot Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT	NIIMRED:
DOCUMENT	NUMBER.

98AON54466H

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

DESCRIPTION:

DFN8 4.90x5.80x0.90, 1.27P

PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales