onsemi

MOSFET – Power, Single, N-Channel

60 V, 15.0 mΩ, 36 A

NTMFS5C677NL

Features

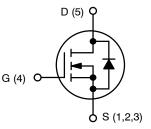
- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

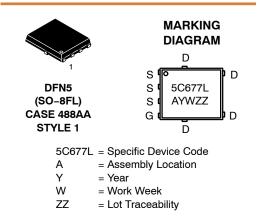
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	60	V
Gate-to-Source Voltage	Gate-to-Source Voltage			±20	V
Continuous Drain	Steady State	$T_{C} = 25^{\circ}C$	۱ _D	36	А
Current R _{θJC} (Notes 1, 3)		T _C = 100°C		25	
Power Dissipation		$T_{C} = 25^{\circ}C$	PD	37	W
R _{θJC} (Note 1)		T _C = 100°C		18	
Continuous Drain	Steady State	T _A = 25°C	۱ _D	11	А
Current R _{θJA} (Notes 1, 2, 3)		$T_A = 100^{\circ}C$		7.8	
Power Dissipation		T _A = 25°C	PD	3.5	W
$R_{\theta JA}$ (Notes 1 & 2)		T _A = 100°C		1.8	
Pulsed Drain Current	$T_A = 25^{\circ}C$, $t_p = 10 \ \mu s$		I _{DM}	166	А
Operating Junction and Storage Temperature			T _J , T _{stg}	–55 to + 175	°C
Source Current (Body Diode)			I _S	31	А
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 2.87 A)			E _{AS}	65	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		ΤL	260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS


Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State	$R_{\theta JC}$	4.1	°C/W
Junction-to-Ambient - Steady State (Note 2)	R _{0.1A}	43	

1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

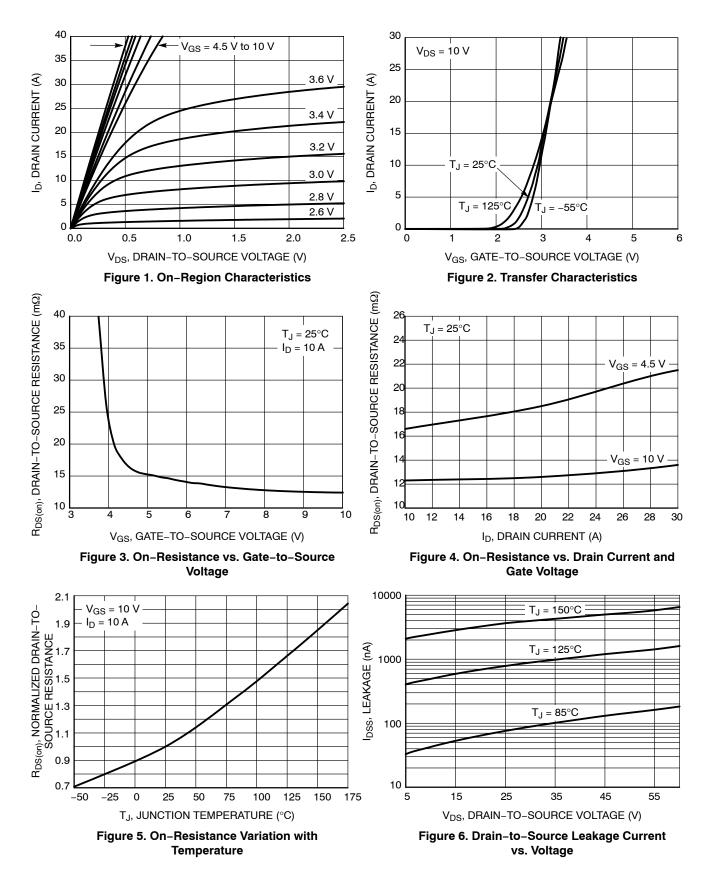

2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.

3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

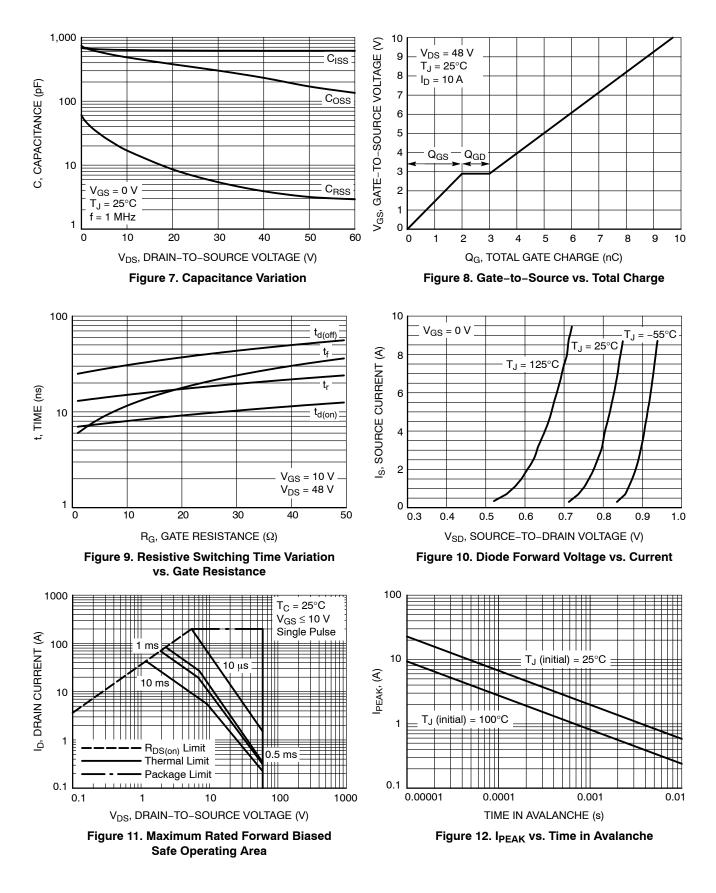
V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX	
60 V	15.0 m Ω @ 10 V	36 A	
00 V	21.5 m Ω @ 4.5 V	30 A	

N-CHANNEL MOSFET

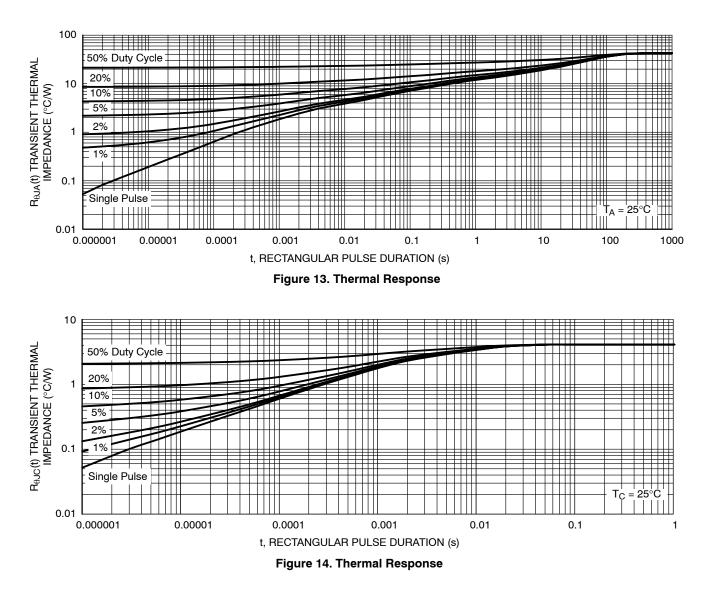
ORDERING INFORMATION


See detailed ordering, marking and shipping information on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise specified)

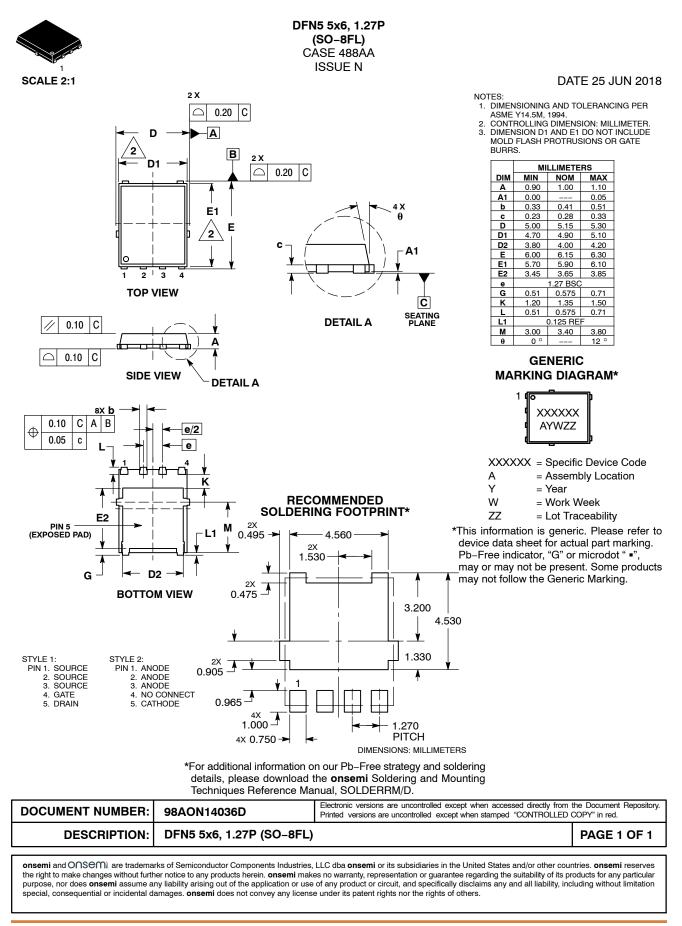

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Max	
$\begin{array}{ c c c c } \hline Drain-to-Source Breakdown Voltage T_T_J & V_{(BR)DSS} / T_J & V_{GS} = 0 V, V_{DS} = 60 V & T_J = 25 \ ^{\circ}C & T_J = 125 \ ^{\circ}C & T_J = 126 \ ^{\circ}C $	-	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	V
$ \begin{array}{ c c c c } \hline V_{DS} = 60 \ V \\ \hline T_J = 125^\circ C \\ \hline ON CHARACTERISTICS (Note 4) \\ \hline Gate Threshold Voltage \\ \hline V_{GS}(TH) \\ \hline V_{GS} = V_{DS}, \ _D = 25 \ \mu A \\ \hline 1.2 \\ \hline Threshold Temperature Coefficient \\ \hline V_{GS}(TH)/T_J \\ \hline Threshold Temperature Coefficient \\ \hline V_{GS} = 10 \ V \\ \hline V_{GS} = 10 \ V \\ \hline I_D = 10 \ A \\ \hline I_D = 10 \ A \\ \hline 1.2 \\ \hline Threshold Temperature Coefficient \\ \hline V_{GS} = 4.5 \ V \\ \hline V_{GS} = 10 \ V, \ I_D = 15 \ A \\ \hline Threshold Capacitance \\ \hline C_{ISS} \\ \hline Output Capacitance \\ \hline C_{ISS} \\ \hline Total Gate Charge \\ \hline Q_{G}(TO) \\ \hline V_{GS} = 0 \ V, \ f = 1 \ MHz, \ V_{DS} = 25 \ V \\ \hline Total Gate Charge \\ \hline Q_{G}(TO) \\ \hline Threshold Gate Charge \\ \hline Q_{G}(TO) \\ \hline Threshold Gate Charge \\ \hline Q_{G}(TO) \\ \hline Pataeu Voltage \\ \hline Q_{G} \\ \hline Plateau Voltage \\ \hline V_{GS} = 10 \ V, \ V_{DS} = 48 \ V; \ I_D = 10 \ A \\ \hline 1.3 \\ \hline Gate-to-Drain Charge \\ \hline Q_{G} \\ \hline Tun-On Delay Time \\ \hline Tun-On Delay Time \\ \hline Tun-On Delay Time \\ \hline Tun-Off Delay Time \\ \hline Tun$		mV/°C
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	250	μΑ
$ \begin{array}{ c c c c c c c } \hline Gate Threshold Voltage & V_{GS}(TH) & V_{GS} = V_{DS}, I_{D} = 25 \ \mu A & 1.2 & -5.0 & -5.$	100	nA
$ \begin{array}{ c c c c c } \hline Threshold Temperature Coefficient & V_{GS(TH)}/T_J & & -5.0 \\ \hline Drain-to-Source On Resistance & R_{DS(on)} & V_{GS} = 10 V & I_D = 10 A & 12.5 \\ \hline V_{GS} = 4.5 V & I_D = 10 A & 17.9 \\ \hline Forward Transconductance & g_{FS} & V_{DS} = 15 V, I_D = 15 A & 27.5 \\ \hline CHARGES AND CAPACITANCES & & & & & & & & & & & & & & & & & & &$	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.0	V
$ \begin{array}{ c c c c c } \hline \mbox{V_{GS}} = 4.5 \ V & \ \mbox{I_{D}} = 10 \ \mbox{A} \\ \hline \mbox{I_{D}} = 15 \ \mbox{I_{D}} \\ \hline \mbox{$CHARGES AND CAPACITANCES$} \\ \hline \mbox{$Charges And Capacitance} & $C_{ISS} \\ \hline \mbox{$I_{D}$} \\ \hline \mbox{$Output Capacitance} & $C_{ISS} \\ \hline \mbox{$Output Capacitance} & $C_{CSS} \\ \hline \mbox{$V_{GS}$} = 0 \ \mbox{$V_{f}$} = 1 \ \mbox{$MHz$}, \ \mbox{$V_{DS}$} = 25 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		mV/°C
$\begin{array}{ c c c c c } \hline Forward Transconductance & g_{FS} & V_{DS} = 15 \ V, \ I_D = 15 \ A & 27.5 \\ \hline \mbox{CHARGES AND CAPACITANCES} \\ \hline \mbox{ChargeS AND CAPACITANCES} & & & & & & & & & & & & & & & & & & &$	15.0	
$\begin{array}{ c c c c } \hline \mbox{CHARGES AND CAPACITANCES} \\ \hline \mbox{Input Capacitance} & C_{ISS} \\ \hline \mbox{Output Capacitance} & C_{OSS} \\ \hline \mbox{Output Capacitance} & C_{RSS} \\ \hline \mbox{V}_{GS} = 0 \ V, \ f = 1 \ MHz, \ V_{DS} = 25 \ V \\ \hline \mbox{MHz}, \ V_{DS} = 25 \ V \\ \hline \mbox{MHz}, \ V_{DS} = 25 \ V \\ \hline \mbox{MHz}, \ V_{DS} = 25 \ V \\ \hline \mbox{MHz}, \ V_{DS} = 25 \ V \\ \hline \mbox{MHz}, \ V_{DS} = 25 \ V \\ \hline \mbox{MHz}, \ V_{DS} = 25 \ V \\ \hline \mbox{MHz}, \ V_{DS} = 25 \ V \\ \hline \mbox{MHz}, \ V_{DS} = 25 \ V \\ \hline \mbox{MHz}, \ V_{DS} = 10 \ A \\ \hline \mbox{MHz}, \ V_{DS} = 10 \ A \\ \hline \mbox{MHz}, \ V_{DS} = 48 \ V; \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ V_{DS} = 48 \ V; \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ V_{DS} = 48 \ V; \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ V_{DS} = 48 \ V; \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ V_{DS} = 48 \ V; \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ V_{DS} = 48 \ V; \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ V_{DS} = 48 \ V; \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ V_{DS} = 48 \ V; \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ V_{DS} = 48 \ V; \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ V_{DS} = 48 \ V; \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ V_{DS} = 48 \ V; \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ V_{DS} = 48 \ V; \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ V_{DS} = 48 \ V; \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ V_{DS} = 48 \ V; \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ V_{DS} = 48 \ V; \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ I_{D} = 10 \ A, \ R_{G} = 1 \ \Omega \\ \hline \mbox{MHz}, \ I_{D} = 10 \ A, \ R_{G} = 1 \ \Omega \\ \hline \mbox{MHz}, \ I_{D} = 10 \ A, \ R_{G} = 1 \ \Omega \\ \hline \mbox{MHz}, \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ I_{D} = 10 \ A \\ \hline \mbox{MHz}, \ I_{D} = 10 \ A \\ \hline \mbox{MHz}$	21.5	mΩ
$ \begin{array}{ c c c c } \mbox{Input Capacitance} & C_{ISS} & \\ \mbox{Output Capacitance} & C_{OSS} & \\ \mbox{Correct} & C_{OSS} & \\ \mbox{Capacitance} & C_{RSS} & \\ \mbox{Capacitance} & Q_{G(TOT)} & V_{GS} = 4.5 \ V, \ V_{DS} = 48 \ V; \ I_D = 10 \ A & 4.5 & \\ \mbox{Capacitance} & Q_{G(TOT)} & V_{GS} = 10 \ V, \ V_{DS} = 48 \ V; \ I_D = 10 \ A & 9.7 & \\ \mbox{Capacitance} & Q_{G(TH)} & \\ \mbox{Capacitance} & Q_{G($		S
$ \begin{array}{ c c c c } \hline \text{Output Capacitance} & C_{OSS} & V_{GS} = 0 \text{ V}, \text{f} = 1 \text{ MHz}, V_{DS} = 25 \text{ V} & 340 \\ \hline \text{Reverse Transfer Capacitance} & C_{RSS} & & & & & & & & & & & & & & & & & & $	-	
$\begin{array}{ c c c c } \hline Reverse \ Transfer \ Capacitance & C_{RSS} & $ & $ & $ & $ & $ & $ & $ & $ & $ &$	Τ	pF
$ \begin{array}{ c c c c } \hline Total Gate Charge & Q_{G(TOT)} & V_{GS} = 4.5 \ V, \ V_{DS} = 48 \ V; \ I_D = 10 \ A & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1	
$\begin{tabular}{ c c c c c c } \hline Total Gate Charge & Q_G(TOT) & V_{GS} = 10 V, V_{DS} = 48 V; I_D = 10 A & 9.7 \\ \hline Threshold Gate Charge & Q_G(TH) & & & & & & & & \\ \hline Gate-to-Source Charge & Q_{GS} & & & & & & & & & & & & & & \\ \hline Gate-to-Drain Charge & Q_{GD} & & & & & & & & & & & & & & & & & & &$	1	
$\begin{tabular}{ c c c c c } \hline Threshold Gate Charge & $Q_{G(TH)}$ \\ \hline Gate-to-Source Charge & Q_{GS} \\ \hline Gate-to-Drain Charge & Q_{GD} \\ \hline Plateau Voltage & V_{GP} \\ \hline \hline Plateau Voltage & V_{GP} \\ \hline \hline \hline SWITCHING CHARACTERISTICS (Note 5) \\ \hline Turn-On Delay Time & $t_{d(ON)}$ \\ \hline Rise Time & t_r \\ \hline Turn-Off Delay Time & $t_{d(OFF)}$ \\ \hline Fall Time & t_f \\ \hline \hline \hline \end{array} \\ \end{tabular} \begin{array}{c} 1.3 \\ 2.1 \\ \hline \\ V_{GS} = 10 \ V, \ V_{DS} = 48 \ V; \ I_D = 10 \ A \\ \hline \end{array} \\ \hline \begin{array}{c} 1.3 \\ 2.1 \\ \hline \end{array} \\ \hline \hline \end{array} \\ \hline \begin{array}{c} 1.3 \\ 2.1 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} 1.3 \\ \hline \end{array} \\ \end{tabular} $		nC
$\begin{tabular}{ c c c c c c } \hline Gate-to-Source Charge & Q_{GS} & & & & & & & & & & & & & & & & & & &$		nC
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	nC
$\begin{tabular}{ c c c c c } \hline Gate-to-Drain Charge & Q_{GD} & & & & & & & & & & & & & & & & & & &$	1	
SWITCHING CHARACTERISTICS (Note 5)Turn-On Delay Time $t_{d(ON)}$ $V_{GS} = 10 \text{ V}, V_{DS} = 48 \text{ V},$ 7Rise Time t_r $I_D = 10 \text{ A}, R_G = 1 \Omega$ 13Turn-Off Delay Time $t_d(OFF)$ 25Fall Time t_f 6	1	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1	V
$\begin{array}{c c} \hline Rise Time & t_r \\ \hline Turn-Off Delay Time & t_d(OFF) \\ \hline Fall Time & t_f \end{array} \begin{array}{c c} V_{GS} = 10 \ V, \ V_{DS} = 48 \ V, \\ I_D = 10 \ A, \ R_G = 1 \ \Omega \end{array} \begin{array}{c c} 13 \\ 25 \\ 6 \end{array}$	-	
Turn-Off Delay Time $t_{d(OFF)}$ $I_D = 10 \text{ A}, R_G = 1 \Omega$ 25Fall Time t_f 6	1	
Fall Time tf 6	1	ns
Fall Timet _f 6	1	
DRAIN-SOURCE DIODE CHARACTERISTICS	1	
	<u>.</u>	
Forward Diode Voltage V_{SD} $V_{GS} = 0 V$, $T_J = 25^{\circ}C$ 0.85	1.2	
$I_{\rm S} = 10 \text{A}$ $T_{\rm J} = 125^{\circ}\text{C}$ 0.72	†	V
Reverse Recovery Time t _{RR} 23.8	1	ns
Charge Time t_a $V_{GS} = 0 V, dls/dt = 100 A/\mu s,$ 11.9	1	
Discharge Time t_b $I_s = 10 A$ 11.8	<u> </u>	
Reverse Recovery Charge Q _{RR} 11.6	1	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Pulse Test: pulse width $\leq 300 \ \mu$ s, duty cycle $\leq 2\%$. 5. Switching characteristics are independent of operating junction temperatures.


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS



DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NTMFS5C677NLT1G	5C677L	DFN5 (Pb–Free)	1500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

onsemi

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>