

# **MOSFET** – Power, Dual, N-Channel, POWERTRENCH®, Power Clip, Asymmetric

# 25 V

# NTMFD1D4N02P1E

### **Features**

- Small Footprint (5x6mm) for Compact Design
- Low R<sub>DS(on)</sub> to Minimize Conduction Losses
- Low Q<sub>G</sub> and Capacitance to Minimize Driver Losses
- These are Pb-free, Halogen Free / BFR Free and are RoHS Compliant

### **Typical Applications**

- DC-DC Converters
- System Voltage Rails

# **MAXIMUM RATINGS** ( $T_J = 25$ °C unless otherwise stated)

| Paran                                                                                                                                      | neter                  |                            | Sym<br>bol                           | Q1           | Q2           | Unit |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------|--------------------------------------|--------------|--------------|------|
| Drain-to-Source Voltage                                                                                                                    |                        |                            | $V_{DSS}$                            | 25           | 25           | V    |
| Gate-to-Source Voltage                                                                                                                     | Gate-to-Source Voltage |                            |                                      | +16V<br>-12V | +16V<br>-12V | V    |
| Continuous Drain                                                                                                                           | Steady                 | T <sub>C</sub> = 25 °C     | I <sub>D</sub>                       | 74           | 155          | Α    |
| Current R <sub>θJC</sub> (Note 3)                                                                                                          | State                  | T <sub>C</sub> = 85 °C     |                                      | 53           | 112          |      |
| Power Dissipation $R_{\theta JC}$ (Note 3)                                                                                                 |                        | T <sub>A</sub> = 25 °C     | P <sub>D</sub>                       | 25           | 41           | W    |
| Continuous Drain                                                                                                                           | Steady                 | T <sub>A</sub> = 25 °C     | I <sub>D</sub>                       | 20           | 36           | Α    |
| Current R <sub>θJA</sub><br>(Notes 1, 3)                                                                                                   | State                  | T <sub>A</sub> = 85 °C     |                                      | 14           | 26           |      |
| Power Dissipation $R_{\theta JA}$ (Notes 1, 3)                                                                                             |                        | T <sub>A</sub> = 25 °C     | P <sub>D</sub>                       | 2.1          | 2.3          | W    |
| Continuous Drain                                                                                                                           | Steady<br>State        | T <sub>A</sub> = 25 °C     | I <sub>D</sub>                       | 13           | 24           | Α    |
| Current R <sub>θJA</sub><br>(Notes 2, 3)                                                                                                   | State                  | T <sub>A</sub> = 85 °C     |                                      | 10           | 17           |      |
| Power Dissipation $R_{\theta JA}$ (Notes 2, 3)                                                                                             |                        | T <sub>A</sub> = 25 °C     | P <sub>D</sub>                       | 0.96         | 1.0          | W    |
| Pulsed Drain Current                                                                                                                       | $T_A = 25$             | °C, t <sub>p</sub> = 10 μs | I <sub>DM</sub>                      | 325          | 552          | Α    |
| Single Pulse Drain-to-Source Avalanche<br>Energy Q1: $I_L = 9.4 A_{pk}$ , L = 3 mH (Note 4)<br>Q2: $I_L = 20.1 A_{pk}$ , L = 3 mH (Note 4) |                        | E <sub>AS</sub>            | 134                                  | 604          | mJ           |      |
| Operating Junction and Storage Temperature Range                                                                                           |                        |                            | T <sub>J</sub> ,<br>T <sub>stg</sub> | –55 to       | o 150        | °C   |
| Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from case for 10 s)                                                         |                        |                            | TL                                   | 26           | 60           | °C   |

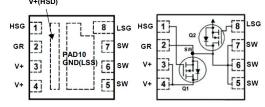
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

| FET  | V <sub>(BR)DSS</sub> | R <sub>DS(on)</sub> MAX | I <sub>D</sub> MAX |
|------|----------------------|-------------------------|--------------------|
| Q1   | 25 V                 | 3.3 mΩ @ 10 V           | 74 A               |
| l Q1 | 25 V                 | 4.2 mΩ @ 4.5 V          | 74.4               |
| Q2   | 25 V                 | 1.1 mΩ @ 10 V           | 155 ^              |
| Q2   | 25 V                 | 1.33 mΩ @ 4.5 V         | 155 A              |



PQFN8 POWER CLIP CASE 483AR

### **MARKING DIAGRAM**




2EKN = Specific Device Code A = Assembly Location

Y = Year WW = Work Week ZZ = Assembly Lot Code

# ELECTRICAL CONNECTION

PAD9



### **ORDERING INFORMATION**

| Device         | Package            | Shipping <sup>†</sup> |  |  |
|----------------|--------------------|-----------------------|--|--|
| NTMFD1D4N02P1E | PQFN8<br>(Pb-Free) | 3000 / Tape &<br>Reel |  |  |

† For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, <u>BRD8011/D</u>.

**Table 1. THERMAL RESISTANCE RATINGS** 

| Parameter                                      | Symbol          | Q1 Max | Q2 Max | Units |
|------------------------------------------------|-----------------|--------|--------|-------|
| Junction-to-Case – Steady State (Note 1, 3)    |                 | 4.4    | 2.9    | °C/W  |
| Junction-to-Ambient - Steady State (Note 1, 3) | $R_{\theta JA}$ | 60     | 55     |       |
| Junction-to-Ambient – Steady State (Note 2, 3) | $R_{\theta JA}$ | 130    | 120    |       |

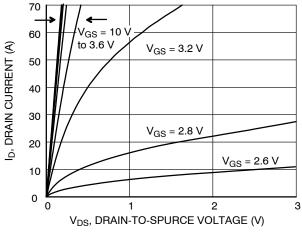
- Surface-mounted on FR4 board using 1 in<sup>2</sup> pad size, 2 oz Cu pad.
   Surface-mounted on FR4 board using minimum pad size, 2 oz Cu pad.
- The entire application environment impacts the thermal resistance values shown. They are not constants and are only valid for the particular conditions noted. Actual continuous current will be limited by thermal & electro-mechanical application board design. R<sub>θCA</sub> is determined
- by the user's board design.

  4. Q1 100% UIS tested at L = 0.1 mH, I<sub>AS</sub> = 16.5 A. Q2 100% UIS tested at L = 0.1 mH, I<sub>AS</sub> = 36 A.

| Table 2. ELECTRICAL CHARAC        |                        | <u> </u>                                                                  | 1   | Γ   | 1 _  | 1        | T     |
|-----------------------------------|------------------------|---------------------------------------------------------------------------|-----|-----|------|----------|-------|
| Parameter                         | Symbol                 | Test Condition                                                            | FET | Min | Тур  | Max      | Unit  |
| OFF CHARACTERISTICS               |                        |                                                                           |     |     |      |          |       |
| Drain-to-Source Breakdown Voltage | V <sub>(BR)DSS</sub>   | $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$                             | Q1  | 25  |      |          | V     |
| Drain-to-Source Breakdown Voltage | V <sub>(BR)DSS</sub>   | $V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$                                | Q2  | 25  |      |          | V     |
| Drain-to-Source Breakdown Voltage | V <sub>(BR)DSS</sub> / | I <sub>D</sub> = 250 μA, ref to 25 °C                                     | Q1  |     | 16   |          | mV/°C |
| Temperature Coefficient           | T <sub>J</sub>         | I <sub>D</sub> = 1 mA, ref to 25 °C                                       | Q2  |     | 19   |          | 1     |
| Zero Gate Voltage Drain Current   | I <sub>DSS</sub>       | $V_{GS} = 0 \text{ V}, V_{DS} = 20 \text{ V}$ $T_J = 25 ^{\circ}\text{C}$ | Q1  |     |      | 10       | μΑ    |
|                                   |                        |                                                                           | Q2  |     |      | 10       | 1     |
| Gate-to-Source Leakage Current    | I <sub>GSS</sub>       | V <sub>DS</sub> = 0 V, V <sub>GS</sub> = +16 V / -12 V                    | Q1  |     |      | ±100     | nA    |
|                                   |                        | $V_{DS} = 0 \text{ V}, V_{GS} = +16 \text{ V} / -12 \text{ V}$            | Q2  |     |      | ±100     | 1     |
| ON CHARACTERISTICS (Note 5)       | •                      |                                                                           | •   | •   |      | •        | •     |
| Gate Threshold Voltage            | V <sub>GS(TH)</sub>    | $V_{GS} = V_{DS}, I_D = 250 \mu A$                                        | Q1  | 1.2 | 1.54 | 2.0      | V     |
|                                   |                        | $V_{GS} = V_{DS}, I_D = 800 \mu A$                                        | Q2  | 1.2 | 1.55 | 2.0      | 1     |
| Threshold Temperature Coefficient | V <sub>GS(TH)</sub> /  | I <sub>D</sub> = 250 μA, ref to 25 °C                                     | Q1  |     | -4.3 |          | mV/°C |
|                                   |                        | I <sub>D</sub> = 800 μA, ref to 25 °C                                     | Q2  |     | -4.4 |          | 7     |
| Drain-to-Source On Resistance     | R <sub>DS(on)</sub>    | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 20 A                             | Q1  |     | 2.6  | 3.3      | mΩ    |
|                                   |                        | V <sub>GS</sub> = 4.5 V, I <sub>D</sub> = 18 A                            |     |     | 3.4  | 4.2      |       |
|                                   |                        | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 37 A                             | Q2  |     | 0.81 | 1.1      |       |
|                                   |                        | V <sub>GS</sub> = 4.5 V, I <sub>D</sub> = 33 A                            |     |     | 1.04 | 1.33     |       |
| Forward Transconductance          | 9 <sub>FS</sub>        | V <sub>DS</sub> = 5 V, I <sub>D</sub> = 20 A                              | Q1  |     | 125  |          |       |
|                                   |                        | V <sub>DS</sub> = 5 V, I <sub>D</sub> = 37 A                              | Q2  |     | 285  |          | 1     |
| Gate Resistance                   | $R_{G}$                | T <sub>A</sub> = 25 °C                                                    | Q1  |     | 0.44 |          | Ω     |
|                                   |                        |                                                                           | Q2  |     | 0.6  |          | 1     |
| CHARGES & CAPACITANCES            | •                      |                                                                           |     |     |      |          |       |
| Input Capacitance                 | C <sub>ISS</sub>       | V <sub>GS</sub> = 0 V, V <sub>DS</sub> = 13 V, f = 1 MHz                  | Q1  |     | 1180 |          | pF    |
|                                   |                        |                                                                           | Q2  |     | 3603 |          | 1     |
| Output Capacitance                | Coss                   |                                                                           | Q1  |     | 320  |          | pF    |
|                                   |                        |                                                                           | Q2  |     | 940  |          | 1     |
| Reverse Capacitance               | C <sub>RSS</sub>       |                                                                           | Q1  |     | 22   |          | pF    |
|                                   |                        |                                                                           | Q2  |     | 64   | <u> </u> | 1     |

- 5. Pulse Test: pulse width  $\leq$  300  $\mu s,$  duty cycle  $\leq$  2%
- 6. Switching characteristics are independent of operating junction temperatures

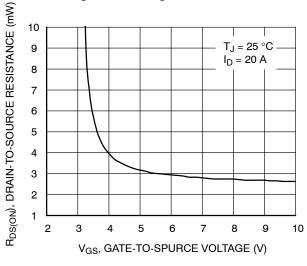
Table 2. ELECTRICAL CHARACTERISTICS ( $T_J = 25$  °C unless otherwise stated) (continued)


| Parameter                 | Symbol              | Test Condition                                                          | FET         | Min | Тур  | Max | Unit       |
|---------------------------|---------------------|-------------------------------------------------------------------------|-------------|-----|------|-----|------------|
| CHARGES & CAPACITANCES    | •                   |                                                                         | •           |     |      | 1   | <u>,</u> 1 |
| Total Gate Charge         | Q <sub>G(TOT)</sub> | Q1: V <sub>GS</sub> = 4.5V, V <sub>DS</sub> = 13V, I <sub>D</sub> = 20A |             |     | 7.2  |     | nC         |
|                           |                     | Q2: $V_{GS} = 4.5V$ , $V_{DS} = 13V$ , $I_{D}$                          | = 37A Q2    |     | 21.5 |     |            |
| Gate-to-Drain Charge      | $Q_{GD}$            |                                                                         | Q1          |     | 1.35 |     | nC         |
|                           |                     |                                                                         | Q2          |     | 3.9  |     |            |
| Gate-to-Source Charge     | $Q_{GS}$            |                                                                         | Q1          |     | 3.15 |     | nC         |
|                           |                     |                                                                         | Q2          |     | 9.1  |     |            |
| Total Gate Charge         | Q <sub>G(TOT)</sub> | V <sub>GS</sub> = 10 V, V <sub>DS</sub> = 13 V, I <sub>D</sub> = 2      | 0 A Q1      |     | 16.4 |     | nC         |
|                           |                     | V <sub>GS</sub> = 10 V, V <sub>DS</sub> = 13 V, I <sub>D</sub> = 3      | 7 A Q2      |     | 48.6 |     |            |
| SWITCHING CHARACTERISTIC  | S, VGS = 4.5 V (I   | Note 6)                                                                 |             |     |      |     |            |
| Turn-On Delay Time        | t <sub>d(ON)</sub>  | V <sub>GS</sub> = 4.5 V                                                 | Q1          |     | 11.6 |     | ns         |
|                           |                     | Q1: $I_D = 20 \text{ A}, V_{DD} = 13 \text{ V}, R_G$                    | QZ          |     | 21.4 |     |            |
| Rise Time                 | t <sub>r(ON)</sub>  | Q2: $I_D = 37 \text{ A}, V_{DD} = 13 \text{ V}, R_G$                    | = 652<br>Q1 |     | 2.7  |     | ns         |
|                           |                     |                                                                         | Q2          |     | 8.7  |     |            |
| Turn-Off Delay Time       | t <sub>d(OFF)</sub> |                                                                         | Q1          |     | 15.6 |     | ns         |
|                           |                     |                                                                         | Q2          |     | 30.7 |     |            |
| Fall Time                 | t <sub>f</sub>      | 1                                                                       |             |     | 3.2  |     | ns         |
|                           |                     |                                                                         | Q2          |     | 8.5  |     | <u></u>    |
| SWITCHING CHARACTERISTIC  | S, VGS = 10 V (N    | lote 6)                                                                 |             |     |      |     |            |
| Turn-On Delay Time        | t <sub>d(ON)</sub>  | V <sub>GS</sub> = 10 V                                                  | Q1          |     | 7.9  |     | ns         |
|                           |                     | Q1: $I_D = 20 \text{ A}, V_{DD} = 13 \text{ V}, R_G$                    | QZ          |     | 10.2 |     |            |
| Rise Time                 | t <sub>r(ON)</sub>  | Q2: $I_D = 37 \text{ A}, V_{DD} = 13 \text{ V}, R_G$                    | = 652<br>Q1 |     | 1.1  |     | ns         |
|                           |                     |                                                                         | Q2          |     | 3.3  |     |            |
| Turn-Off Delay Time       | t <sub>d(OFF)</sub> |                                                                         | Q1          |     | 21.3 |     | ns         |
|                           |                     |                                                                         | Q2          |     | 48.9 |     |            |
| Fall Time                 | t <sub>f</sub>      |                                                                         | Q1          |     | 2.2  |     | ns         |
|                           |                     |                                                                         | Q2          |     | 7.4  |     |            |
| SOURCE-TO-DRAIN DIODE CHA | ARACTERISTICS       | 3                                                                       |             |     |      |     |            |
| Forward Diode Voltage     | $V_{SD}$            | V <sub>GS</sub> = 0 V, I <sub>S</sub> = 20 A T <sub>J</sub> =           | 25 °C Q1    |     | 0.8  | 1.2 | V          |
|                           |                     | T <sub>J</sub> =                                                        | 125 °C      |     | 0.7  |     |            |
|                           |                     | $V_{GS} = 0 \text{ V}, I_S = 37 \text{ A}$ $T_J =$                      | 25 °C Q2    |     | 0.8  | 1.2 |            |
|                           |                     | T <sub>J</sub> =                                                        | 125 °C      |     | 0.65 |     |            |
| Reverse Recovery Time     | t <sub>RR</sub>     | V <sub>GS</sub> = 0 V,                                                  | Q1          |     | 21.4 |     | ns         |
|                           |                     | Q1: $I_S = 20 \text{ A}$ , $dI/dt = 100 \text{ A/µs}$                   | - QZ        |     | 36.5 |     |            |
| Reverse Recovery Charge   | Q <sub>RR</sub>     | Q2: I <sub>S</sub> = 37 A, dl/dt = 300 A/μs                             |             |     | 8.3  |     | nC         |
|                           |                     |                                                                         | Q2          |     | 21.9 |     | 1          |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

<sup>5.</sup> Pulse Test: pulse width  $\leq$  300  $\mu$ s, duty cycle  $\leq$  2% 6. Switching characteristics are independent of operating junction temperatures

### **TYPICAL CHARACTERISTICS FOR Q1**


70



60 (X) 50 40 T<sub>J</sub> = 125 °C T<sub>J</sub> = -55 °C T<sub>J</sub> = -55 °C T<sub>J</sub> = -55 °C V<sub>GS</sub>, GATE-TO-SPURCE VOLTAGE (V)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics



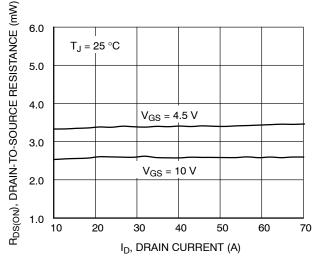
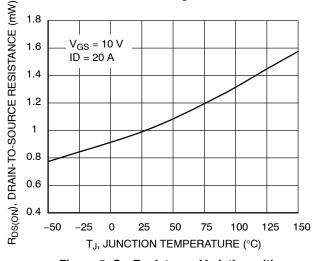




Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage



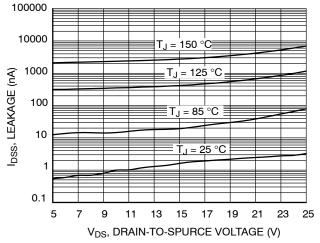



Figure 5. On-Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

### TYPICAL CHARACTERISTICS FOR Q1 (continued)

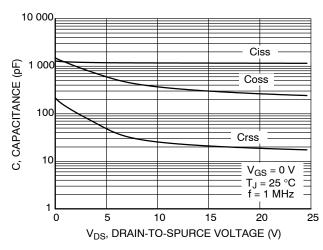



Figure 7. Capacitance Variation

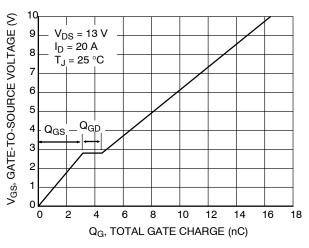



Figure 8. Gate-to-Source vs. Total Charge

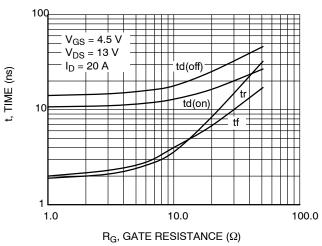



Figure 9. Resistive Switching Time Variation vs.
Gate Resistance

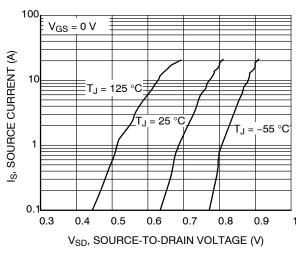



Figure 10. Diode Forward Voltage vs. Current

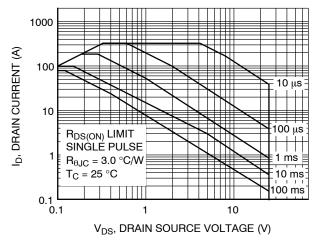



Figure 11. Maximum Rated Forward Biased Safe Operationg Area

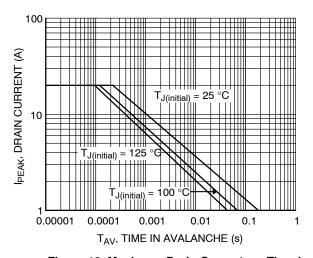



Figure 12. Maximum Drain Current vs. Time in Avalanche

# TYPICAL CHARACTERISTICS FOR Q1 (continued)

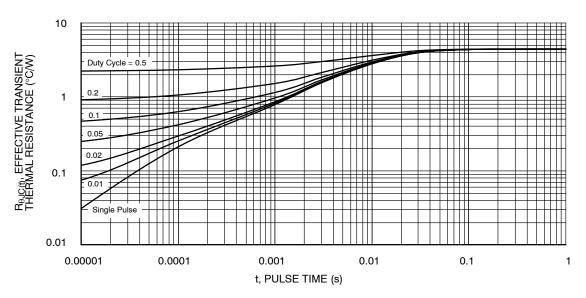
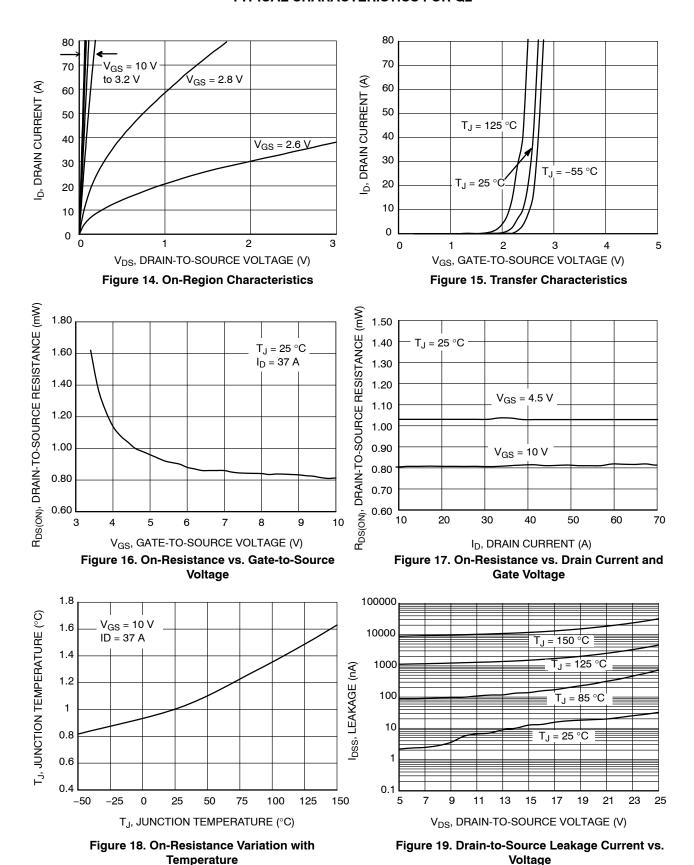




Figure 13. Thermal Response

### **TYPICAL CHARACTERISTICS FOR Q2**



### TYPICAL CHARACTERISTICS FOR Q2 (continued)

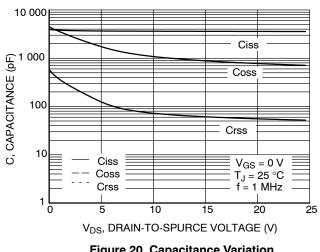



Figure 20. Capacitance Variation

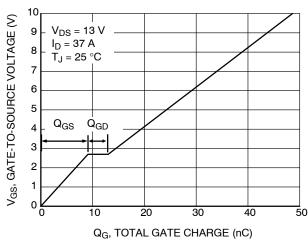



Figure 21. Gate-to-Source vs. Total Charge

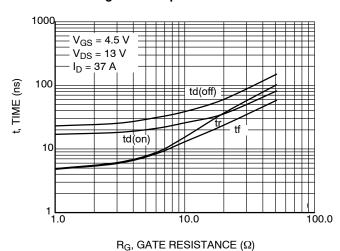



Figure 22. Resistive Switching Time Variation vs. **Gate Resistance** 

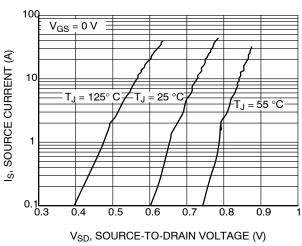



Figure 23. Diode Forward Voltage vs. Current

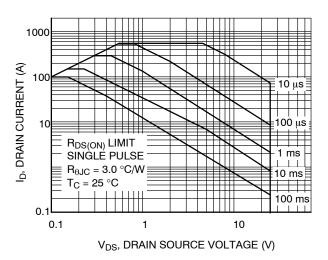



Figure 24. Maximum Rated Forward Biased Safe **Operating Area** 

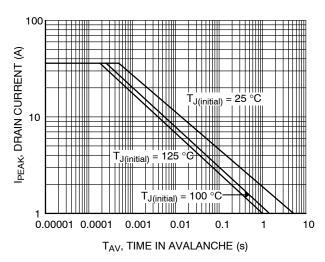



Figure 25. Maximum Drain Current vs. Time in **Avalanche** 

# TYPICAL CHARACTERISTICS FOR Q2 (continued)

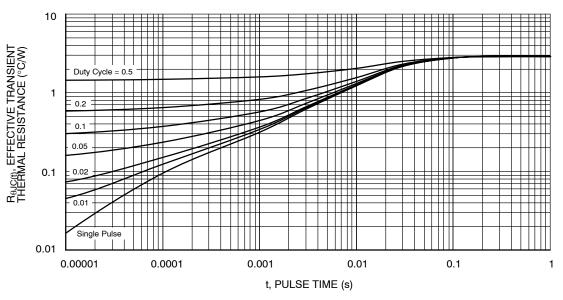



Figure 26. Thermal Response

POWERTRENCH is the registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

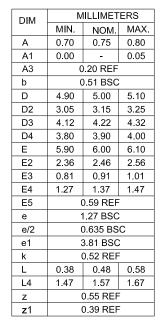
# **REVISION HISTORY**

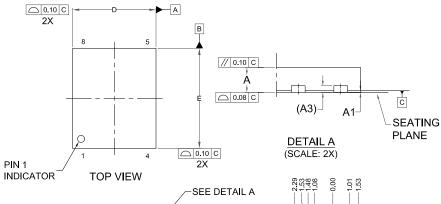
| Revision | Description of Changes                      | Date      |
|----------|---------------------------------------------|-----------|
| 2        | Document rebranded to <b>onsemi</b> format. | 11/5/2025 |

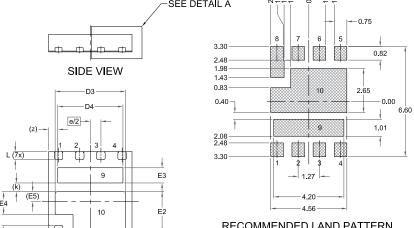
This document has undergone updates prior to the inclusion of this revision history table. The changes tracked here only reflect updates made on the noted approval dates.









### PQFN8 5.00x6.00x0.75, 1.27P CASE 483AR ISSUE D


**DATE 06 NOV 2023** 

NOTES: UNLESS OTHERWISE SPECIFIED

- A) DOES NOT FULLY CONFORM TO JEDEC REGISTRATION, MO-229, DATED 11/2001.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH, MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM.
- D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.







RECOMMENDED LAND PATTERN \*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON13666G               | Electronic versions are uncontrolled except when accessed directly from the Document Re<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |  |
|------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| DESCRIPTION:     | PQFN8 5.00x6.00x0.75, 1.2 | 7P                                                                                                                                                                         | PAGE 1 OF 1 |  |  |

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or quarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

b

(8X)

e1

-D2 **BOTTOM VIEW** 

0.10M C A B 0.05M C

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

### ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ 

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales