MOSFET – Power, Single, N-Channel, μCool, UDFN6, 2.0x2.0x0.55 mm 30 V, 10.7 A

Features

- Low Profile UDFN 2.0 x 2.0 x 0.55 mm for Board Space Saving with Exposed Drain Pads for Excellent Thermal Conduction
- Ultra Low R_{DS(on)} to Reduce Conduction Losses
- Optimized Gate Charge to Reduce Switching Losses
- Low Capacitance to Minimize Driver Losses
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

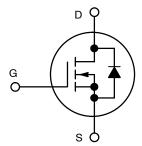
- Power Load Switch
- Synch DC-DC Converters
- Wireless Charging Circuit

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Pai	rameter	Symbol	Value	Unit	
Drain-to-Source Vo	V_{DSS}	30	V		
Gate-to-Source Vol	Gate-to-Source Voltage			±20	V
Continuous Drain	Steady	T _A = 25°C	I _D	10.7	Α
Current (Note 1)	State	T _A = 85°C		7.7	
	t ≤ 5 s	T _A = 25°C		15.1	
Power Dissipa- tion (Note 1)	Steady State	T _A = 25°C	P _D	1.54	W
	t ≤ 5 s	T _A = 25°C		3.1	
Continuous Drain	Steady State	T _A = 25°C	I _D	6.8	Α
Current (Note 2)	State	T _A = 85°C		4.9	
Power Dissipation (Note 2) T _A = 25°			P_{D}	0.63	W
Pulsed Drain Curre	Pulsed Drain Current $t_p = 10 \mu s$			43	Α
MOSFET Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to 150	°C
Source Current (Body Diode) (Note 1)			Is	1.55	Α
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
- Surface-mounted on FR4 board using the minimum recommended pad size, 2 oz. Cu.



ON Semiconductor®

www.onsemi.com

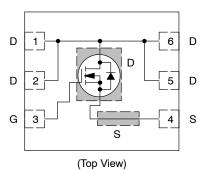
MOSFET

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX	
30 V	9 mΩ @ 10 V		
	12 mΩ @ 4.5 V	10.7 A	
	15 mΩ @ 3.7 V	10.7 A	
	19 mΩ @ 3.3 V		

N-CHANNEL MOSFET

MARKING DIAGRAM

1 o AGM=


AG = Specific Device Code

M = Date Code

■ = Pb-Free Package

(Note: Microdot may be in either location)

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient – Steady State (Note 3)	$R_{\theta JA}$	81	
Junction-to-Ambient – t ≤ 5 s (Note 3)	$R_{\theta JA}$	40.5	°C/W
Junction-to-Ambient – Steady State min Pad (Note 4)	$R_{\theta JA}$	200	

- 3. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
 4. Surface-mounted on FR4 board using the minimum recommended pad size, 2 oz. Cu.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Units
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 250 μA, ref to 25°C			12		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1.0	μΑ
		V _{DS} = 24 V	T _J = 125°C			10	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±20 V				±100	nA
ON CHARACTERISTICS (Note 5)							•
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, I _D = 250 μA	1.3		2.1	V
Negative Threshold Temp. Coefficient	V _{GS(TH)} /T _J				4.8		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 '	V, I _D = 9.0 A		7.2	9	mΩ
		V _{GS} = 4.5	V, I _D = 8.0 A		9.3	12	
		V _{GS} = 3.7	V, I _D = 5.0 A		10.9	15	
		V _{GS} = 3.3	V, I _D = 5.0 A		13	19	
Forward Transconductance	9FS	V _{DS} = 15 V, I _D = 9.0 A			39		S
CHARGES, CAPACITANCES & GATE	RESISTANCE						•
Input Capacitance	C _{ISS}	$V_{GS} = 0 \text{ V, f} = 1 \text{ MHz,} $ $V_{DS} = 15 \text{ V}$			1172		pF
Output Capacitance	C _{OSS}				546		1
Reverse Transfer Capacitance	C _{RSS}				26		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V};$ $I_D = 8.0 \text{ A}$			8.4		nC
Threshold Gate Charge	Q _{G(TH)}				1.1		1
Gate-to-Source Charge	Q _{GS}				3.0		
Gate-to-Drain Charge	Q_{GD}				2.2		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 15 V; I _D = 9.0 A			18		nC
SWITCHING CHARACTERISTICS, VG	S = 4.5 V (Note 6)			•			
Turn-On Delay Time	t _{d(ON)}				9.4		ns
Rise Time	t _r	V_{GS} = 4.5 V, V_{DD} = 15 V, I_D = 8.0 A, R_G = 3 Ω			15		
Turn-Off Delay Time	t _{d(OFF)}				14		
Fall Time	t _f				3.5		
SWITCHING CHARACTERISTICS, VG	S = 10 V (Note 6)			•			_
Turn-On Delay Time	t _{d(ON)}				6.3		ns
Rise Time	t _r	V _{CS} = 10 V	. V _{DD} = 15 V		14		
Turn-Off Delay Time	t _{d(OFF)}	V_{GS} = 10 V, V_{DD} = 15 V, I_{D} = 9.0 A, R_{G} = 3 Ω			18		
Fall Time	t _f				2.4		

- 5. Pulse Test: pulse width \leq 300 $\mu\text{s},$ duty cycle \leq 2%.
- 6. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Toot Co	ondition	Min	Tym	Max	Units
Parameter	Symbol	lest Co	mailion	IVIII	Тур	wax	Units
DRAIN-SOURCE DIODE CHARAC	TERISTICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	T _J = 25°C		0.72	1.1	V
		V _{GS} = 0 V, I _S = 1.5 A	T _J = 125°C		0.52		
Reverse Recovery Time	t _{RR}				29		ns
Charge Time	t _a	$V_{GS} = 0 \text{ V, dIs/dt} = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 1.5 \text{ A}$			14.1		
Discharge Time	t _b				14.9]
Reverse Recovery Charge	Q _{RR}				20		nC

- 5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.
- 6. Switching characteristics are independent of operating junction temperatures.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

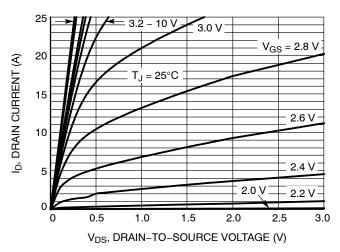


Figure 1. On-Region Characteristics

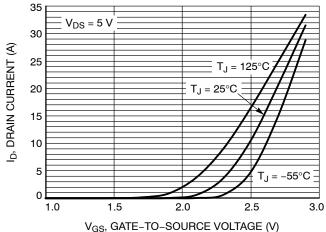


Figure 2. Transfer Characteristics

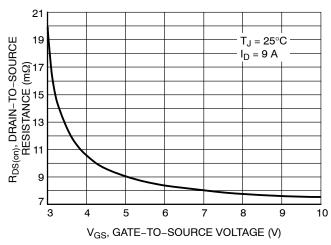


Figure 3. On-Resistance vs. Gate-to-Source Voltage

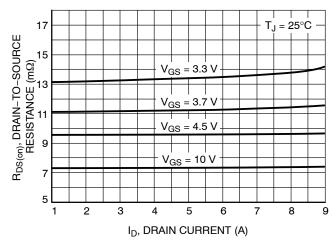


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

TYPICAL CHARACTERISTICS

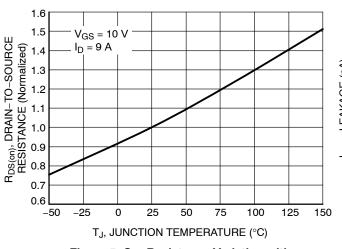
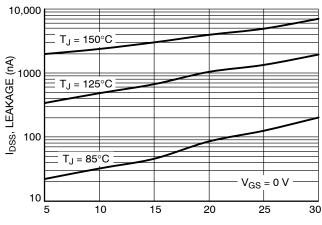



Figure 5. On-Resistance Variation with **Temperature**

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

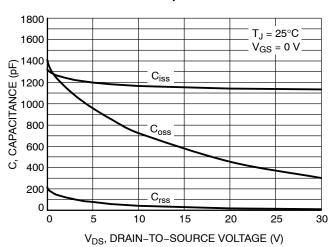
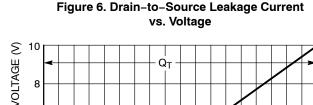



Figure 7. Capacitance Variation

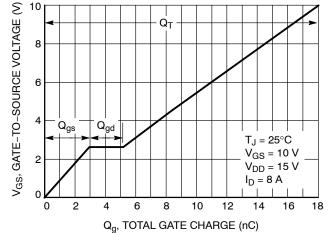


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

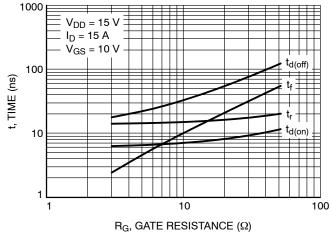


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

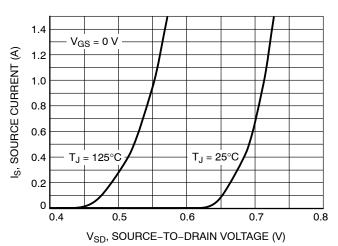


Figure 10. Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS

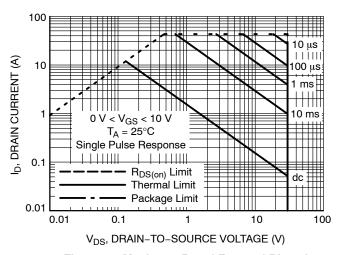


Figure 11. Maximum Rated Forward Biased Safe Operating Area

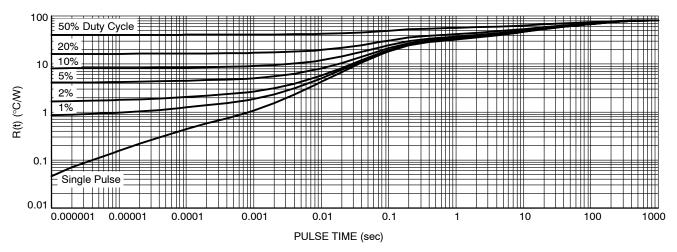


Figure 12. Thermal Response

DEVICE ORDERING INFORMATION

Device	Package	Shipping [†]
NTLUS4C12NTAG	UDFN6 (Pb-Free)	3000 / Tape & Reel
NTLUS4C12NTBG	UDFN6 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

D

TOP VIEW

SIDE VIEW

D2→

J1

BOTTOM VIEW

Α1

DETAIL B

A B

F

PIN ONE

REFERENCE.

0.10 С

// 0.10 C

|△| 0.08 | C

DETAIL A

E2

NOTE 4

□ 0.10 | C

UDFN6 2x2, 0.65P CASE 517BG **ISSUE A**

MOLD CMPD

EXPOSED Cu

DETAIL B

OPTIONAL CONSTRUCTIONS

DETAIL A

OPTIONAL CONSTRUCTIONS

PLATING

C SEATING PLANE

0.10

0.05 С NOTE 5

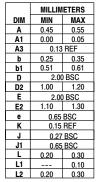
CA В

Ф

0.10

0.05 С NOTE 3

6X b


CA

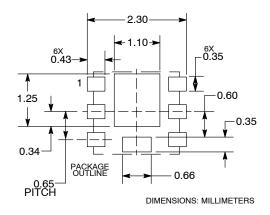
В

DATE 04 FEB 2010

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM TERMINAL.
- COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
- CENTER TERMINAL LEAD IS OPTIONAL. CENTER TERMINAL
- IS CONNECTED TO TERMINAL LEAD # 4. LEADS 1, 2, 5 AND 6 ARE TIED TO THE FLAG.

GENERIC MARKING DIAGRAM*


XX = Specific Device Code

Μ = Date Code

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

RECOMMENDED **MOUNTING FOOTPRINT**

DOCUMENT NUMBER:	98AON48158E	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	UDFN6 2x2, 0.65P		PAGE 1 OF 1			

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales