MOSFET - Power, Single N-Channel, WDFN6 25 V, 4.1 mΩ, 19.4 A

Product Preview NTLJS4D7N03H

Features

- Small Footprint (4 mm²) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- These Devices are Pb-Free, Halogen-Free/BFR-Free and are RoHS Compliant

Applications

- DC-DC Converters
- Wireless Chargers
- Power Load Switch
- Power Management and Protection
- Battery Management

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Paran	neter		Symbol	Value	Unit
Drain-to-Source Voltag	e		V _{DSS}	25	V
Gate-to-Source Voltage	9		V _{GS}	±20	V
Continuous Drain Cur-	Steady	$T_A = 25^{\circ}C$	I _D	19.4	А
rent R _{θJA} (Notes 1, 3)	State	T _A = 85°C		14	
Power Dissipation $R_{\theta JA}$ (Notes 1, 3)		$T_A = 25^{\circ}C$	P _D	2.40	W
Continuous Drain Cur-	Steady State	$T_A = 25^{\circ}C$	۱ _D	11.6	А
rent $R_{\theta JA}$ (Notes 2, 3)	Slale	T _A = 85°C		8.4	
Power Dissipation $R_{\theta JA}$ (Notes 2, 3)		$T_A = 25^{\circ}C$	P _D	0.86	W
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10 \ \mu s$		I _{DM}	78	А
Operating Junction and Range	Storage T	emperature	rature T _J , T _{stg}		°C
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		ΤL	260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

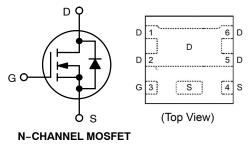
THERMAL RESISTANCE MAXIMUM RATINGS (Note 1)

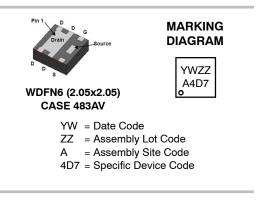
Parameter	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	52	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	145	

1. Surface-mounted on FR4 board using 1 in² pad size, 2 oz. Cu pad.

- 2. Surface-mounted on FR4 board using minimum pad size, 2 oz. Cu pad.
- 3. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted. Actual continuous current will be limited by thermal & electro–mechanical application board design. $R_{\theta CA}$ is determined by the user's board design.

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.




ON Semiconductor®

www.onsemi.com

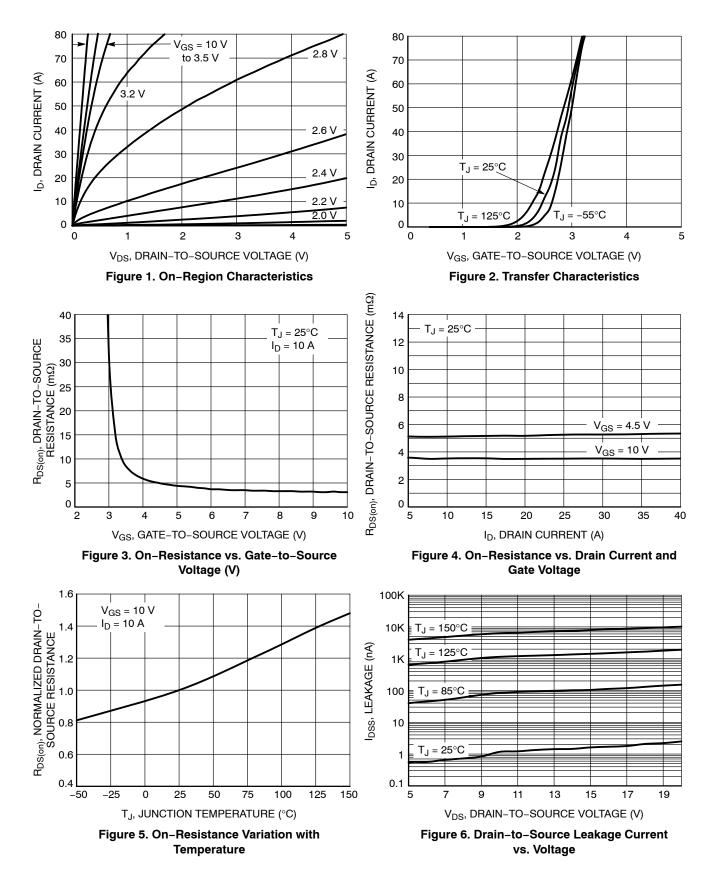
V _{(BR)DSS}	R _{DS(on)} MAX I _D MA	
25 V	4.1 mΩ @ 10 V	19.4 A
25 V	6.25 mΩ @ 4.5 V	19.4 A

ELECTRICAL CONNECTION

ORDERING INFORMATION

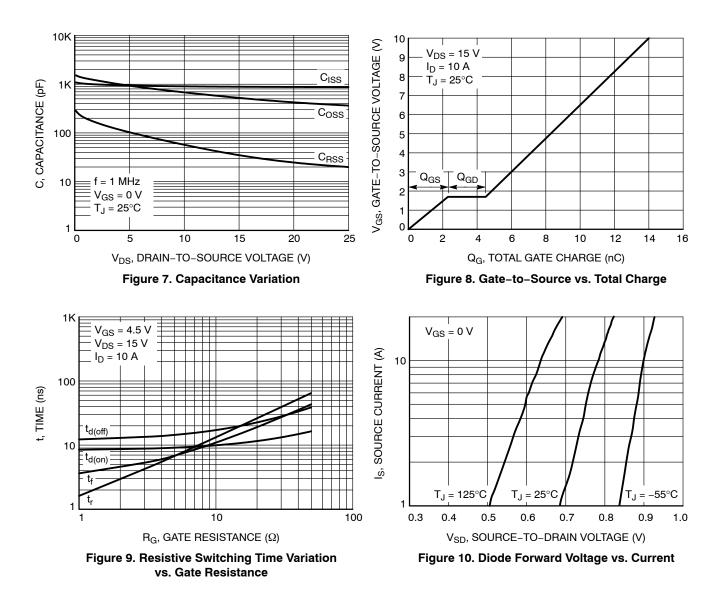
See detailed ordering, marking and shipping information in the package dimensions section on page 4 of this data sheet.

NTLJS4D7N03H


ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	·				-	-	-
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 250 μ A		25			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	$I_D = 250 \ \mu\text{A}, \text{ ref to } 25^{\circ}\text{C}$			16.2		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1	μA
	$V_{\rm DS} = 20$ V	T _J = 125°C			10	1	
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS}	= +20/-16 V			±100	nA
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D}$	= 250 μA	1.2		2.1	V
Threshold Temperature Coefficient	V _{GS} /T _J	I _D = 250 μA, r	ef to 25°C		-4.76		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V,	_D = 10 A		3.35	4.1	mΩ
		V _{GS} = 4.5 V,	I _D = 10 A		5.02	6.25	1
Forward Transconductance	g fs	V _{DS} = 5 V, I	_D = 10 A		47		S
Gate Resistance	R _G	T _A = 25	5°C		1		Ω
HARGES AND CAPACITANCES							
Input Capacitance	C _{iss}	V _{GS} = 0 V, V _{DS} = 15 V, f = 1.0 MHz			851		pF
Output Capacitance	C _{oss}				524		
Reverse Transfer Capacitance	C _{rss}				35		1
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 4.5 V, V _{DS} = 15 V, I _D = 10 A			6.7		nC
Threshold Gate Charge	Q _{G(TH)}				1.2		nC
Gate-to-Source Charge	Q _{GS}				2.3		1
Gate-to-Drain Charge	Q _{GD}				2.2		
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 10 V, V_{DS} = 15 V, I _D = 10 A			14		nC
SWITCHING CHARACTERISTICS, V	GS = 4.5 V (Note	5)					
Turn-On Delay Time	t _{d(on)}				9.3		ns
Rise Time	t _r	V _{GS} = 4.5 V, V	ם = 15 V.		8		1
Turn-Off Delay Time	t _{d(off)}	$I_{\rm D} = 10 \rm{A}, \rm{F}$	$_{\rm G} = 6 \Omega$		15		1
Fall Time	t _f				7.7		1
SWITCHING CHARACTERISTICS, V		5)			•		
Turn-On Delay Time	t _{d(on)}				6.8		ns
Rise Time	t _r	$V_{CR} = 10 V V$	= 15 V		2.7		1
Turn-Off Delay Time	t _{d(off)}	$\begin{array}{l} V_{GS} = 10 \; V, \; V_{DD} = 15 \; V, \\ I_{D} = 10 \; A, \; R_{G} = 6 \; \Omega \end{array}$			19.6		1
Fall Time	t _f				4.8		1
RAIN-SOURCE DIODE CHARACTE	RISTICS						•
Forward Diode Voltage	V _{SD} V _{CD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.79	1.2	2 V
		$V_{GS} = 0.0,$ $I_{S} = 10 \text{ A}$	T _J = 125°C		0.65		1
Reverse Recovery Time	t _{RR}	$V_{OO} = 0 V dl_{0}/d$	t = 100 A/us		32.6		ns
Reverse Recovery Charge	Q _{RR}	V_{GS} = 0 V, dl _S /dt = 100 A/µs, I _S = 10 A			14.3		nC

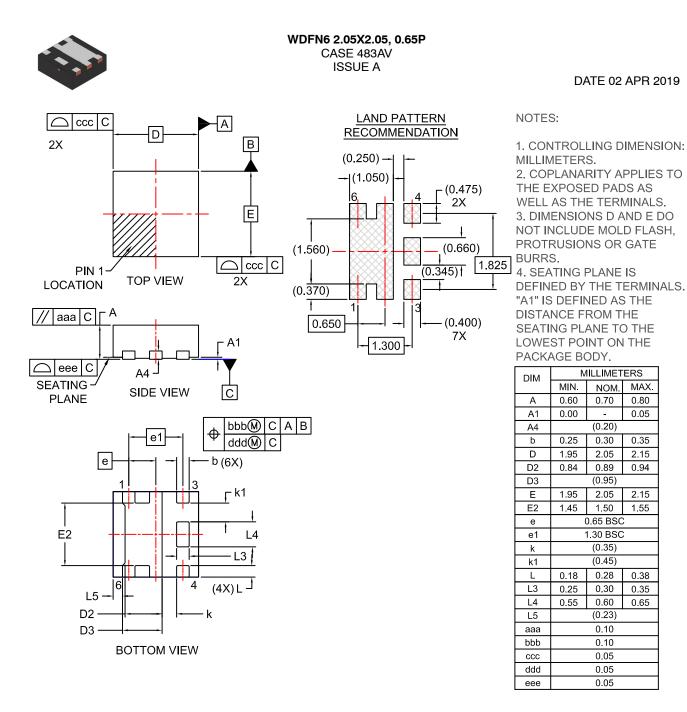
performance may not be indicated by the Electrical Characteristics for the listed test conditions. 4. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%. 5. Switching characteristics are independent of operating junction temperatures.


NTLJS4D7N03H

TYPICAL CHARACTERISTICS

NTLJS4D7N03H

TYPICAL CHARACTERISTICS



DEVICE ORDERING INFORMATION

Device	Package	Shipping [†]
NTLJS4D7N03HTAG	WDFN6 (Pb–Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

semi

DOCUMENT NUMBER:	98AON13671G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TION: WDFN6 2.05X2.05, 0.65P PAGE 1 OF					
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights or the rights of others.						

2.15

1.55

0.38

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>