onsemi

MOSFET - Power, Single N-Channel, SUPERFET[®] V, FAST, TO247-3L

600 V, 41 mΩ, 57 A

NTHL041N60S5H

Description

The SUPERFET V MOSFET FAST series helps maximize system efficiency by the extremely low switching losses in hard switching application. Features

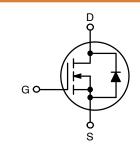
• $650 \text{ V} @ \text{T}_{\text{J}} = 150^{\circ}\text{C}$

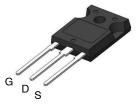
- Typ. $R_{DS(on)} = 32.8 \text{ m}\Omega$
- 100% Avalanche Tested
- Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Telecom / Server Power Supplies
- EV Charger / UPS / Solar / Industrial Power Supplies

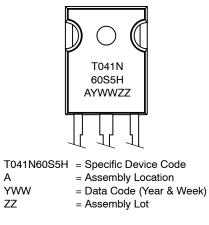
ABSOLUTE MAXIMUM RATINGS (T_J = 25° C, Unless otherwise noted)


Parameter		Symbol	Value	Unit
Drain-to-Source Voltage		V _{DSS}	600	V
Gate-to-Source Voltage	Gate-to-Source Voltage DC		±30	V
	AC (f > 1 Hz)		±30	
Continuous Drain Current	$T_{C} = 25^{\circ}C$	Ι _D	57	А
	$T_{C} = 100^{\circ}C$		36	
Power Dissipation	T _C = 25°C	PD	329	W
Pulsed Drain Current (Note 1)	Pulsed Drain Current (Note 1) $T_{C} = 25^{\circ}C$		200	А
Pulsed Source Current (Body Diode) (Note 1)	T _C = 25°C	I _{SM}	200	A
Operating Junction and Storage Temperature Range		T _J , T _{STG}	–55 to +150	°C
Source Current (Body Diode)		I _S	57	А
Single Pulse Avalanche Energy	l _L = 8 A, R _G = 25 Ω	E _{AS}	560	mJ
Avalanche Current		I _{AS}	8	А
Repetitive Avalanche Energy (Note 1)		E _{AR}	3.29	mJ
MOSFET dv/dt		dv/dt	120	V/ns
Peak Diode Recovery dv/dt (Note 2)			20	
Lead Temperature for Soldering Purposes (1/8" from case for 10 seconds)		ΤL	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Repetitive rating: pulse-width limited by maximum junction temperature.

2. $I_{SD} \leq$ 28.5 A, di/dt \leq 200 A/µs, $V_{DD} \leq$ 400 V, starting T_J = 25°C.


V _{DSS}	R _{DS(ON)} MAX	I _D MAX
600 V	41 mΩ @ 10 V	57 A

TO-247 Long Leads CASE 340CX

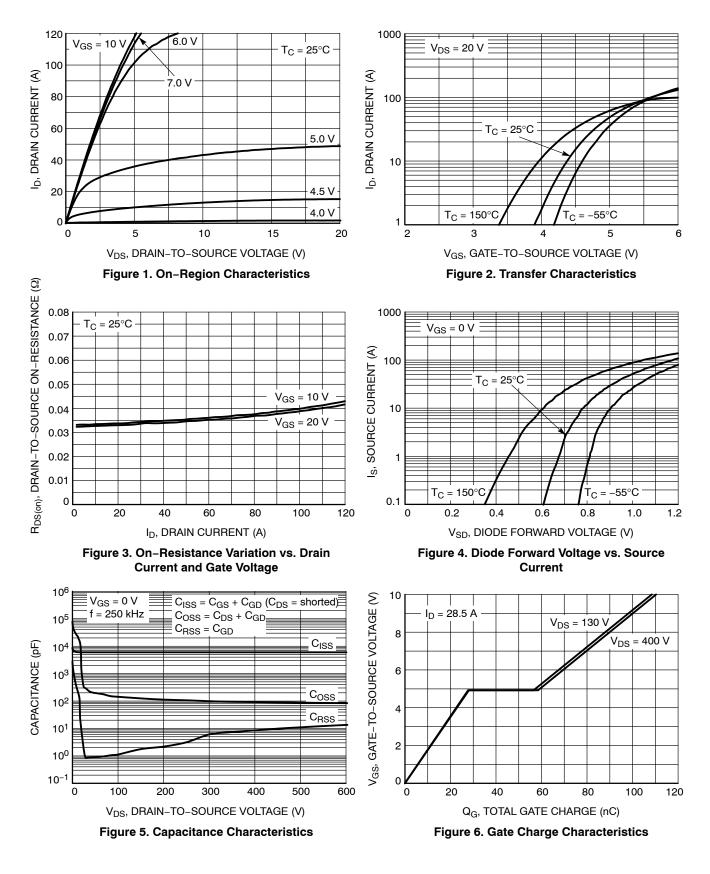
MARKING DIAGRAM

ORDERING INFORMATION

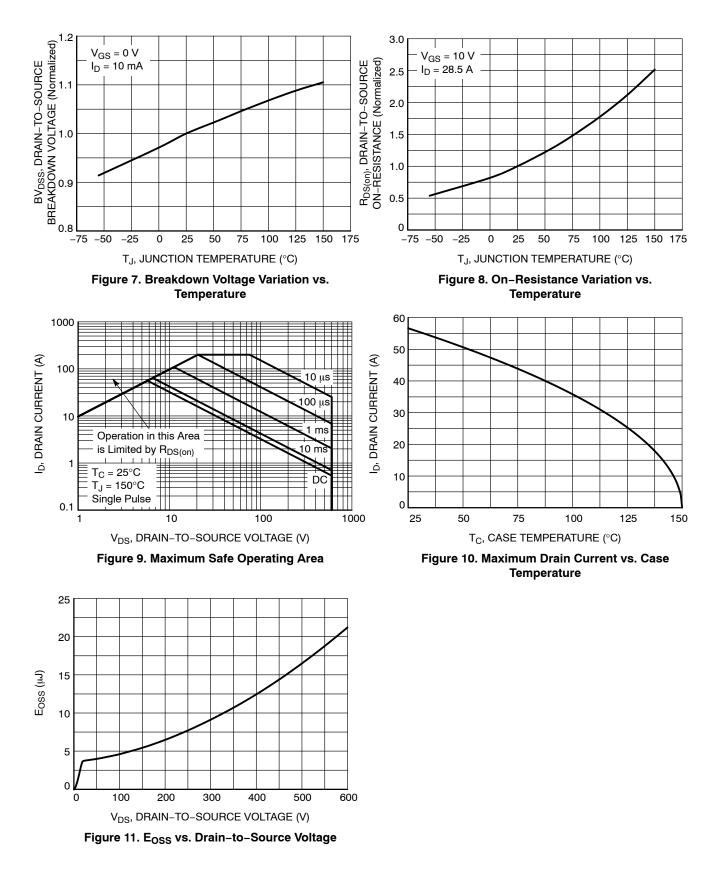
Device	Package	Shipping
NTHL041N60S5H	TO-247	30 Units / Tube

THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case, Max.	$R_{ ext{ heta}JC}$	0.38	°C/W
Thermal Resistance, Junction-to-Ambient, Max.	$R_{ hetaJA}$	40	


ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit	
OFF CHARACTERISTICS		•					
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 1 mA, T_J = 25°C	600	-	-	V	
Drain-to-Source Breakdown Voltage Temperature Coefficient	$\Delta V_{(BR)DSS}/ \Delta T_{J}$	I_D = 10 mA, Referenced to 25°C	_	630	-	mV/°C	
Zero Gate Voltage Drain Current	I _{DSS}	V_{GS} = 0 V, V_{DS} = 600 V, T_{J} = 25°C	-	-	2	μA	
Gate-to-Source Leakage Current	I _{GSS}	V_{GS} = ±30 V, V_{DS} = 0 V	-	-	±100	nA	
ON CHARACTERISTICS		•					
Drain-to-Source On Resistance	R _{DS(on)}	V_{GS} = 10 V, I_{D} = 28.5 A, T_{J} = 25 $^{\circ}C$	-	32.8	41	mΩ	
Gate Threshold Voltage	V _{GS(th)}	$V_{GS}=V_{DS},I_{D}=6.7\text{ mA},T_{J}=25^{\circ}\text{C}$	2.7	-	4.3	V	
Forward Trans-conductance	9FS	$V_{DS} = 20 \text{ V}, \text{ I}_{D} = 28.5 \text{ A}$	-	66	-	S	
CHARGES, CAPACITANCES & GATE	RESISTANCE	•					
Input Capacitance	C _{ISS}	V_{DS} = 400 V, V_{GS} = 0 V, f = 250 kHz	_	5840	-	pF	
Output Capacitance	C _{OSS}		_	92	-		
Time Related Output Capacitance	C _{OSS(tr.)}	$I_{D} = Constant, V_{DS} = 0 V to 400 V, \\ V_{GS} = 0 V$	-	1451	-	1	
Energy Related Output Capacitance	C _{OSS(er.)}	V_{DS} = 0 V to 400 V, V_{GS} = 0 V	-	155	-	1	
Total Gate Charge	Q _{G(tot)}	V_{DD} = 400 V, I_{D} = 28.5 A, V_{GS} = 10 V	-	108	-	nC	
Gate-to-Source Charge	Q _{GS}		_	28	-		
Gate-to-Drain Charge	Q _{GD}		_	29	-		
Gate Resistance	R _G	f = 1 MHz	_	0.6	-	Ω	
SWITCHING CHARACTERISTICS		•					
Turn-On Delay Time	t _{d(on)}	$V_{GS} = 0/10 \text{ V}, V_{DD} = 400 \text{ V},$	_	33	-	ns	
Rise Time	t _r	I _D = 28.5 A, R _G = 2.2 Ω	-	11	-	1	
Turn-Off Delay Time	t _{d(off)}	1	_	81	-		
Fall Time	t _f	1	_	2	-		
SOURCE-TO-DRAIN DIODE CHARAC	TERISTICS	· · · · · · · · · · · · · · · · · · ·		-		-	
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _{SD} = 28.5 A, T _J = 25°C	_	_	1.2	V	


Forward Diode Voltage	V _{SD}	V_{GS} = 0 V, I _{SD} = 28.5 A, T _J = 25°C	-	-	1.2	V
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 V, I_{SD} = 28.5 A,$	-	461	-	ns
Reverse Recovery Charge	Q _{RR}	dl/dt = 100 A/µs, V _{DD} = 400 V	-	9566	-	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

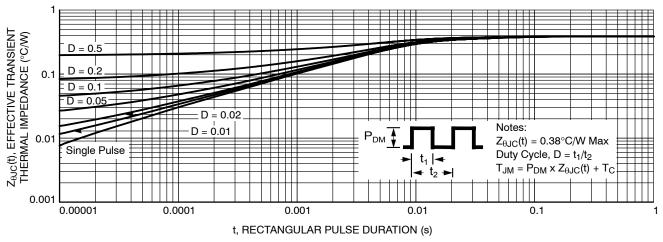


Figure 12. Transient Thermal Impedance

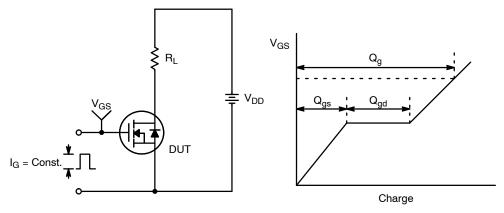


Figure 13. Gate Charge Test Circuit & Waveform

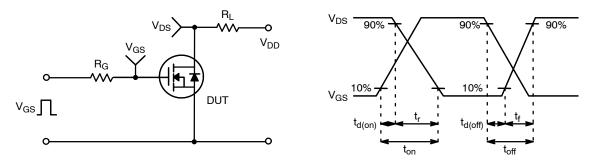


Figure 14. Resistive Switching Test Circuit & Waveforms

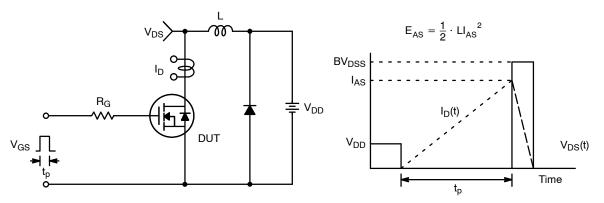


Figure 15. Unclamped Inductive Switching Test Circuit & Waveforms

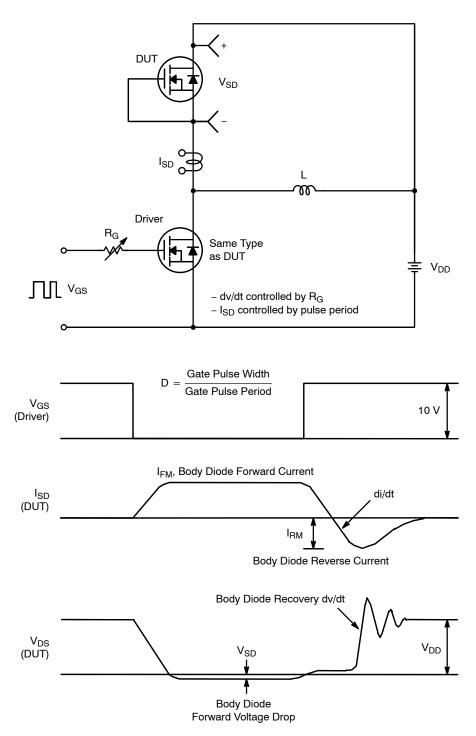
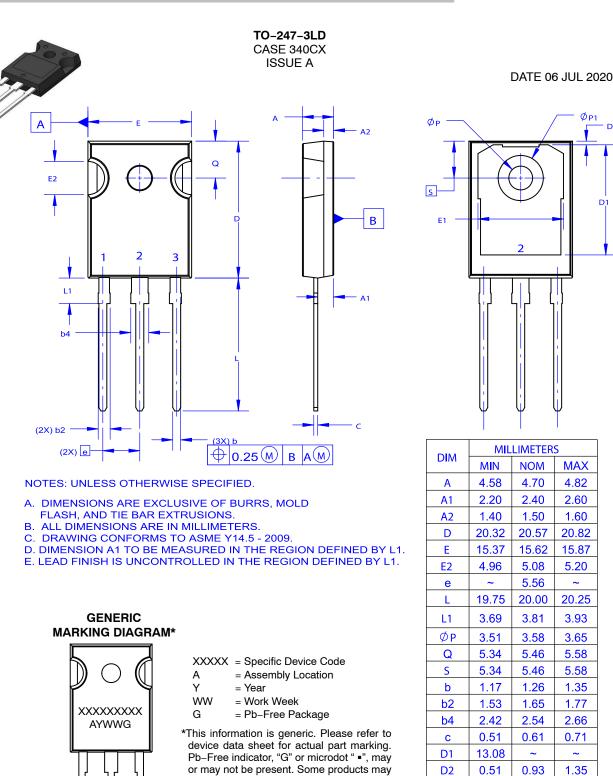



Figure 16. Peak Diode Recovery dv/dt Test Circuit & Waveforms

SUPERFET is a registered trademark of Semiconductor Components Industries, LLC or its subsidiaries in the United States and/or other countries.

6.60 6.80 7.00 Electronic versions are uncontrolled except when accessed directly from the Document Repository. **DOCUMENT NUMBER:** 98AON93302G Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** TO-247-3LD PAGE 1 OF 1

not follow the Generic Marking.

ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

~

12.81

~

E1

ØP1

D2

ON Semiconductor

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>