NTGS3455T1

MOSFET - P-Channel, TSOP-6

-3.5 A, -30 V

Features

- Ultra Low $\mathrm{R}_{\mathrm{DS}(o n)}$
- Higher Efficiency Extending Battery Life
- Miniature TSOP-6 Surface Mount Package
- Pb -Free Package is Available

Applications

- Power Management in Portable and Battery-Powered Products, i.e.: Cellular and Cordless Telephones, and PCMCIA Cards

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	$\mathrm{V}_{\text {DSS }}$	-30	Volts
Gate-to-Source Voltage - Continuous	V_{GS}	± 20.0	Volts
Thermal Resistance Junction-to-Ambient (Note 1) Total Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Drain Current - Continuous @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ - Pulsed Drain Current ($\mathrm{T}_{\mathrm{p}}<10 \mu \mathrm{~S}$) Maximum Operating Power Dissipation Maximum Operating Drain Current	$\begin{gathered} \mathrm{R}_{\mathrm{PJAA}} \\ \mathrm{P}_{\mathrm{d}} \\ \mathrm{I}_{\mathrm{D}} \\ \mathrm{I}_{\mathrm{DM}} \\ \mathrm{P}_{\mathrm{d}} \\ \mathrm{I}_{\mathrm{D}} \end{gathered}$	$\begin{gathered} 62.5 \\ 2.0 \\ -3.5 \\ -20 \\ 1.0 \\ -2.5 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$ Watts Amps Amps Watts Amps
Thermal Resistance Junction-to-Ambient (Note 2) Total Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Drain Current - Continuous @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ - Pulsed Drain Current ($\mathrm{T}_{\mathrm{p}}<10 \mu \mathrm{~S}$) Maximum Operating Power Dissipation Maximum Operating Drain Current	$\begin{gathered} \mathrm{R}_{\text {OJA }} \\ \mathrm{P}_{\mathrm{d}} \\ \mathrm{I}_{\mathrm{D}} \\ \mathrm{I}_{\mathrm{DM}} \\ \mathrm{P}_{\mathrm{d}} \\ \mathrm{I}_{\mathrm{D}} \end{gathered}$	$\begin{gathered} 128 \\ 1.0 \\ \\ -2.5 \\ -14 \\ 0.5 \\ -1.75 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$ Watts Amps Amps Watts Amps
Operating and Storage Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	$\begin{gathered} -55 \text { to } \\ 150 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Maximum Lead Temperature for Soldering Purposes for 10 Seconds	T_{L}	260	${ }^{\circ} \mathrm{C}$

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. Mounted onto a $2^{\prime \prime}$ square FR-4 board (1 in sq, 2 oz . Cu. 0.06 " thick single sided), t < 5.0 seconds.
2. Mounted onto a $2^{\prime \prime}$ square FR-4 board ($1 \mathrm{in} \mathrm{sq}, 2 \mathrm{oz}$. Cu. 0.06 " thick single sided), operating to steady state.

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

(Note: Microdot may be in either location)
*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping †
NTGS3455T1	TSOP-6	3000 Tape \& Reel
NTGS3455T1G	TSOP-6 (Pb-Free)	3000 Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted) (Notes $3 \& 4$)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage $\left(V_{G S}=0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}\right)$	$\mathrm{V}_{\text {(BR) }{ }^{\text {dss }}}$	-30	-	-	Vdc
Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{GS}}=0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{DS}}=-30 \mathrm{Vdc}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)$ $\left(\mathrm{V}_{\mathrm{GS}}=0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{DS}}=-30 \mathrm{Vdc}, \mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}\right)$	IDSs	-	-	$\begin{aligned} & -1.0 \\ & -5.0 \end{aligned}$	$\mu \mathrm{Adc}$
Gate-Body Leakage Current $\left(\mathrm{V}_{\mathrm{GS}}=-20.0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{Vdc}\right)$	IGSS	-	-	-100	nAdc
Gate-Body Leakage Current $\left(\mathrm{V}_{\mathrm{GS}}=+20.0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{Vdc}\right)$	$I_{\text {GSS }}$	-	-	100	nAdc

ON CHARACTERISTICS

Gate Threshold Voltage $\left(\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{Adc}\right)$	V_{GS} (th)	-1.0	-1.87	-3.0	Vdc
Static Drain-Source On-State Resistance $\left(\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=-3.5 \mathrm{Adc}\right)$ $\left(\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=-2.7 \mathrm{Adc}\right)$	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	-	$\begin{aligned} & 0.094 \\ & 0.144 \end{aligned}$	$\begin{aligned} & 0.100 \\ & 0.170 \end{aligned}$	Ω
Forward Transconductance $\left(V_{D S}=-15 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=-3.5 \mathrm{Adc}\right)$	grs	-	6.0	-	mhos

DYNAMIC CHARACTERISTICS

Total Gate Charge	$\begin{gathered} \left(\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{Vdc}, \mathrm{~V}_{G S}=-10 \mathrm{Vdc},\right. \\ \left.\mathrm{I}_{\mathrm{D}}=-3.5 \mathrm{Adc}\right) \end{gathered}$	$\mathrm{Q}_{\text {tot }}$	-	9.0	13	nC
Gate-Source Charge		Q_{gs}	-	2.5	-	
Gate-Drain Charge		Q_{gd}	-	2.0	-	
Input Capacitance	$\begin{gathered} \left(V_{D S}=-5.0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc},\right. \\ f=1.0 \mathrm{MHz}) \end{gathered}$	$\mathrm{C}_{\text {iss }}$	-	480	-	pF
Output Capacitance		$\mathrm{Cosss}^{\text {coser }}$	-	220	-	
Reverse Transfer Capacitance		$\mathrm{C}_{\text {rss }}$	-	60	-	

SWITCHING CHARACTERISTICS

Turn-On Delay Time	$\begin{gathered} \left(\mathrm{V}_{\mathrm{DD}}=-20 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=-1.0 \mathrm{Adc},\right. \\ \left.\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{Vdc}, \mathrm{R}_{\mathrm{g}}=6.0 \Omega\right) \end{gathered}$	$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	-	10	20	ns
Rise Time		t_{r}	-	15	30	
Turn-Off Delay Time		$\mathrm{t}_{\mathrm{d} \text { (off) }}$	-	20	35	
Fall Time		t_{f}	-	10	20	
Reverse Recovery Time	$\left(\mathrm{I}_{\mathrm{S}}=-1.7 \mathrm{Adc}, \mathrm{dl}_{\mathrm{S}} / \mathrm{dt}=100 \mathrm{~A} / \mathrm{\mu s}\right)$	trr	-	30	-	ns

BODY-DRAIN DIODE RATINGS

Diode Forward On-Voltage	$\left(I_{\mathrm{S}}=-1.7 \mathrm{Adc}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{Vdc}\right)$	V_{SD}	-	-0.90	-1.2	Vdc
Diode Forward On-Voltage	$\left(\mathrm{I}_{\mathrm{S}}=-3.5 \mathrm{Adc}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{Vdc}\right)$	V_{SD}	-	-1.0	-	Vdc

3. Indicates Pulse Test: P.W. $=300 \mu \mathrm{sec}$ max, Duty Cycle $=2 \%$.
4. Class 1 ESD rated - Handling precautions to protect against electrostatic discharge are mandatory.

Figure 1. On-Region Characteristics

Figure 3. On-Resistance vs. Gate-to-Source Voltage
$R_{\text {DS(on), }}$, DRAIN-TO-SOURCE RESISTANCE (NORMALIZED)

Figure 2. Transfer Characteristics

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

Figure 6. Capacitance Variation

Figure 7. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

Figure 8. Diode Forward Voltage vs. Current

Figure 9. Normalized Thermal Transient Impedance, Junction-to-Ambient

Figure 10. Single Pulse Power

TSOP-6 3.00x1.50x0.90, 0.95P
CASE 318G
ISSUE W
DATE 26 FEB 2024

NDTES:

1. DIMENSIDNING AND TULERANCING PER ASME Y14.5M, 2018.
2. CINTRILLING DIMENSIUN: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS $\square F$ BASE MATERIAL,
4. DIMENSIUNS D AND E1 DI NDT INCLUDE MILD FLASH,

PRZTRUSIINS, $\square R$ GATE BURRS. MILD FLASH, PRUTRUSIDNS, \quad RR GATE BURRS SHALL NDT EXCEED 0.15 PER SIDE, DIMENSIDNS D AND E1 ARE DETERMINED AT DATUM H.
5. PIN 1 INDICATQR MUST BE LDCATED IN THE INDICATED ZENE

MILLIMETERS			
DIM	MIN	NLM	MAX
A	0.90	1.00	1.10
A1	0.01	0.06	0.10
A己	0.80	0.90	1.00
b	0.25	0.38	0.50
C	0.10	0.18	0.26
D	2.90	3.00	3.10
E	2.50	2.75	3.00
E1	1.30	1.50	1.70
e	0.85	0.95	1.05
L	0.20	0.40	0.60
L2	0.25 BSC		
M	0°	---	10°

RECDMMENDED MLUNTING FEDTPRINT
*For additional information on our Pb-Free strategy and soldering details, please download th e ZN Semiconductor Soldering and Mounting Techniques Reference manual, SLLDERRM/D.

DOCUMENT NUMBER:	98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSOP-6 3.00x1.50x0.90, 0.95P	PAGE $\mathbf{1}$ OF 2	

[^0] special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

TSOP-6 $3.00 \times 1.50 \times 0.90,0.95 \mathrm{P}$
CASE 318 G
ISSUE W
DATE 26 FEB 2024

GENERIC
MARKING DIAGRAM*

IC
XXX = Specific Device Code
A =Assembly Location
Y = Year
W = Work Week

- = Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " $\mathrm{\square}$ ", may or may not be present. Some products may not follow the Generic Marking.
STYLE 1:
PIN 1. DRAIN

2. DRAIN
3. GATE
4. SOURCE
5. DRAIN
6. DRAIN
STYLE 2:
PIN 1. EMITTER 2
7. BASE 1
8. COLLECTOR 1
9. EMITTER 1
10. BASE 2
11. COLLECTOR 2
STYLE 3:
PIN 1. ENABLE
12. N/C
13. R BOOST
14. Vz
15. V in
16. V out
STYLE 4:
PIN 1. N/C
17. V in
18. NOT USED
19. GROUND
20. ENABLE
21. LOAD
STYLE 5:
PIN 1. EMITTER 2
22. BASE 2
23. COLLECTOR 1
24. EMITTER 1
25. BASE 1
26. COLLECTOR 2

STYLE 6:
PIN 1. COLLECTOR
2. COLLECTOR
2. COLLE
3. BASE
3. BASE
4. EMITTER
5. COLLECTOR
6. COLLECTOR

STYLE 7:

PIN 1. COLLECTOR
2. COLLECTOR
3. BASE
4. N/C
5. COLLECTOR
6. EMITTER

STYLE 13:
PIN 1. GATE 1
2. SOURCE 2
3. GATE 2
4. DRAIN 2
5. SOURCE 1
6. DRAIN 1

STYLE 9
PIN 1. LOW VOLTAGE GATE
2. DRAIN
3. SOURCE
4. DRAIN
5. DRAIN
6. HIGH VOLTAGE GATE

STYLE 10
PIN 1. D(OUT)+
2. GND
3. D(OUT)-
4. D(IN)-
5. VBUS
6. $\mathrm{D}(\mathrm{IN})+$

STYLE 16:
STYLE 11:
PIN 1. SOURCE 1
2. DRAIN 2
3. DRAIN 2
4. SOURCE 2
5. GATE 1
6. DRAIN 1/GATE 2

STYLE 12:
PIN 1. I/O
2. GROUND
3. I / O
4. I/O
5. VCC
6. I/O

STYLE 15:
PIN 1. ANODE/CATHODE
PIN 1. ANODE 2. SOURCE 3. GATE 4. DRAIN
5. N/C 6. CATHODE

STYLE 17:
PIN 1. EMITTER
2. BASE
3. ANODE/CATHODE
4. ANODE
5. CATHODE
6. COLLECTOR

DOCUMENT NUMBER:	98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSOP-6 3.00x1.50x0.90, 0.95P	PAGE 2 OF 2	

[^1]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:
Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support
For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

[^0]: onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

[^1]: onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

