onsemi

Power MOSFET 20 V, 5.1 A Single N-Channel, TSOP6

V _{(BR)DSS} R _{DS(on)} TYP I		I _D MAX
20 V	36 mΩ @ 4.5 V	5.1 A

NTGS3446

Features

- Ultra Low R_{DS(on)}
- Higher Efficiency Extending Battery Life
- Logic Level Gate Drive
- Diode Exhibits High Speed, Soft Recovery
- Avalanche Energy Specified
- I_{DSS} Specified at Elevated Temperature
- Pb-Free Package is Available

Applications

- Power Management in portable and battery-powered products, i.e. computers, printers, PCMCIA cards, cellular and cordless
- Lithium Ion Battery Applications
- Notebook PC

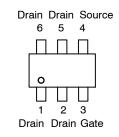
MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)


Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	20	V
Gate-to-Source Voltage	V _{GS}	±12	V
Thermal Resistance Junction-to-Ambient (Note 1) Total Power Dissipation @ T _A = 25°C Drain Current	${\sf R}_{ heta JA} {\sf P}_{\sf d}$	244 0.5	°C/W W
– Continuous @ T _A = 25°C – Pulsed Drain Current (t _p < 10 μ s)	I _D I _{DM}	2.5 10	A A
Thermal Resistance Junction-to-Ambient (Note 2) Total Power Dissipation @ T _A = 25°C Drain Current	R _{θJA} Pd	128 1.0	°C/W W
– Continuous @ T_A = 25°C – Pulsed Drain Current (t $_p <$ 10 $\mu s)$	I _D I _{DM}	3.6 14	A A
Thermal Resistance Junction-to-Ambient (Note 3) Total Power Dissipation @ T _A = 25°C Drain Current	R _{θJA} P _d	62.5 2.0	°C/W W
– Continuous @ $T_A = 25^{\circ}C$ – Pulsed Drain Current ($t_p < 10 \ \mu s$)	I _D I _{DM}	5.1 20	A A
Source Current (Body Diode)	I _S	5.1	А
Operating and Storage Temperature Range	T _J , T _{stg}	– 55 to 150	°C
Maximum Lead Temperature for Soldering Purposes for 10 seconds	ΤL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Minimum FR-4 or G-10PCB, operating to steady state.

- 2. Mounted onto a 2" square FR-4 board (1" sq. 2 oz. cu. 0.06" thick single-sided), operating to steady state.
- Mounted onto a 2" square FR-4 board (1" sq. 2 oz. cu. 0.06" thick single-sided), t < 5.0 seconds.



^{446 =} Device Code W = Work Week

PIN ASSIGNMENT

ORDERING INFORMATION

Device	Package	Shipping [†]
NTGS3446T1G	TSOP-6 (Pb-Free)	3000/Tape & Reel

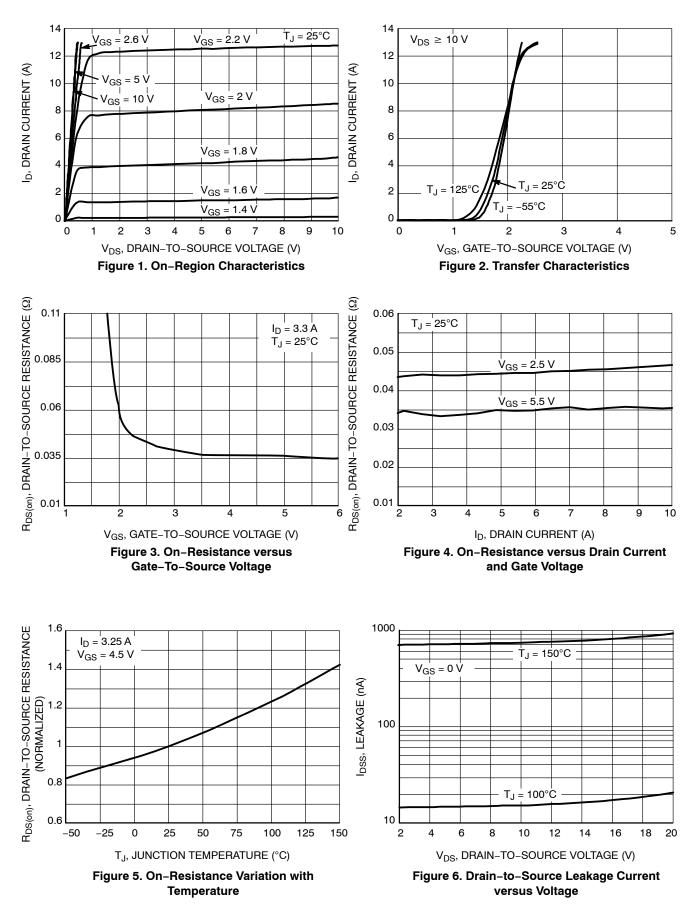
DISCONTINUED (Note 1)

		, ,	
NTGS344	l6T1	TSOP-6	3000/Tape & Reel

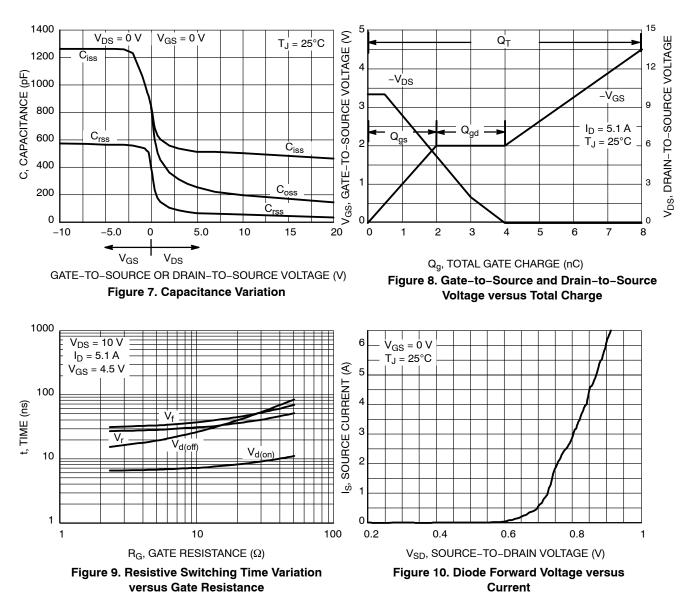
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, <u>BRD8011/D</u>.

 DISCONTINUED: This device is not recommended for new design. Please contact your onsemi representative for information. The most current information on this device may be available on <u>www.onsemi.com</u>.

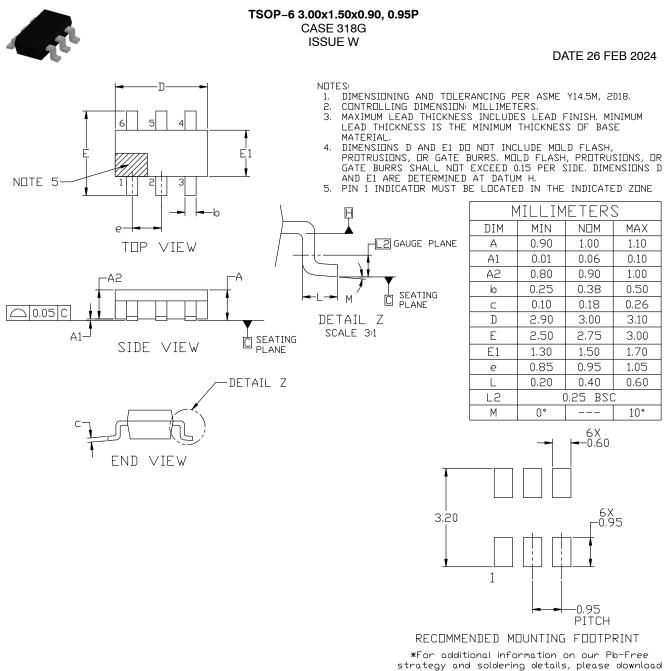
NTGS3446


ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

C	Symbol	Min	Тур	Мах	Unit	
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage ($V_{GS} = 0 Vdc, I_D = 0.25 mAdc$) Temperature Coefficient (Positive)			20 -	22		Vdc mV/°C
Zero Gate Voltage Collector Cu $ \begin{pmatrix} V_{DS} = 20 \text{ Vdc}, V_{GS} = 0 \text{ Vdc} \\ (V_{DS} = 20 \text{ Vdc}, V_{GS} = 0 \text{ Vdc} \\ \end{pmatrix} $)	I _{DSS}			1.0 25	μAdc
Gate-Body Leakage Current (V	_{GS} = ±12 Vdc, V _{DS} = 0)	I _{GSS(f)} I _{GSS(r)}	-		100 -100	nAdc
ON CHARACTERISTICS (Note	- 4)					
$\begin{array}{l} \mbox{Gate Threshold Voltage} \\ \mbox{I}_D = 0.25 \mbox{ mA, } \mbox{V}_{DS} = \mbox{V}_{GS} \\ Temperature Coefficient (Negative Coefficient $	ive)	V _{GS(th)}	0.6 _	0.85 -2.5	1.2 _	Vdc mV/°C
Static Drain-to-Source On-Resist (V_{GS} = 4.5 Vdc, I_D = 5.1 Add (V_{GS} = 2.5 Vdc, I_D = 4.4 Add	R _{DS(on)}		36 44	45 55	mΩ	
Forward Transconductance (VD	9 FS	-	12	-	mhos	
DYNAMIC CHARACTERISTIC	S					
Input Capacitance		C _{iss}	-	510	750	pF
Output Capacitance	(V _{DS} = 10 Vdc, V _{GS} = 0 Vdc, f = 1.0 MHz)	C _{oss}	-	200	350	
Transfer Capacitance	,	C _{rss}	-	60	100	
SWITCHING CHARACTERIST	ICS (Note 5)					
Turn-On Delay Time		t _{d(on)}	-	9.0	16	ns
Rise Time	(V _{DD} = 10 Vdc, I _D = 1.0 Adc,	t _r	-	12	20	
Turn-Off Delay Time	$V_{GS} = 4.5 \text{ Vdc}, \ \overline{R}_{G} = 6.0 \ \Omega$	t _{d(off)}	-	35	60	
Fall Time		t _f	-	20	35	
Gate Charge		Q _T	-	8.0	15	nC
	(V _{DS} = 10 Vdc, I _D = 5.1 Adc, V _{GS} = 4.5 Vdc)	Q _{gs}	-	2.0	-	
		Q _{gd}	-	2.0	_	
SOURCE-DRAIN DIODE CHAI	RACTERISTICS					
Forward On-Voltage (Note 4) $(I_S = 1.7 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(I_S = 1.7 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$		V _{SD}		0.74 0.66	1.1 -	Vdc
			ļ	L	L	L


	$(I_{S} = 1.7 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(I_{S} = 1.7 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_{J} = 85^{\circ}\text{C})$			0.74 0.66	-	
Reverse Recovery Time		t _{rr}	-	20	-	ns
	$(L_{2} = 1.7 \text{ Ado })/(L_{2} = 0.)/(d_{2})$	t _a	1	11	1	
	(I _S = 1.7 Adc, V _{GS} = 0 Vdc, di _S /dt = 100 A/µs)	t _b	1	9.0	1	
Reverse Recovery Stored Charge		Q _{RR}	-	0.01	-	μC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. Pulse Test: Pulse Width ≤[300 µs, Duty Cycle ≤ 2%.
5. Switching characteristics are independent of operating junction temperature.

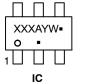

NTGS3446

NTGS3446

strategy and soldering details, please download th e DN Semiconductor Soldering and Mounting Techniques Reference manual, SDLDERRM/D.

DOCUMENT NUMBER:	98ASB14888C	BASB14888C Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TSOP-6 3.00x1.50x0.90, 0.95P PAGE 1 O				
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves					

the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights of others.


TSOP-6 3.00x1.50x0.90, 0.95P CASE 318G **ISSUE W**

DATE 26 FEB 2024

GENERIC **MARKING DIAGRAM***

Μ

.

XXX = Specific Device Code

= Pb-Free Package

= Date Code

XXX = Specific Device Code

А =Assembly Location

= Year

Y W = Work Week

= Pb-Free Package .

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN	STYLE 2: PIN 1. EMITTER 2 2. BASE 1 3. COLLECTOR 1 4. EMITTER 1 5. BASE 2 6. COLLECTOR 2	STYLE 3: PIN 1. ENABLE 2. N/C 3. R BOOST 4. Vz 5. V in 6. V out	STYLE 4: PIN 1. N/C 2. V in 3. NOT USED 4. GROUND 5. ENABLE 6. LOAD	STYLE 5: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 6: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR
STYLE 7: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. N/C 5. COLLECTOR 6. EMITTER	STYLE 8: PIN 1. Vbus 2. D(in) 3. D(in)+ 4. D(out)+ 5. D(out) 6. GND	STYLE 9: PIN 1. LOW VOLTAGE GA 2. DRAIN 3. SOURCE 4. DRAIN 5. DRAIN 6. HIGH VOLTAGE GA	2. GND ´ 3. D(OUT)– 4. D(IN)– 5. VBUS	STYLE 11: PIN 1. SOURCE 1 2. DRAIN 2 3. DRAIN 2 4. SOURCE 2 5. GATE 1 6. DRAIN 1/GATE 2	STYLE 12: PIN 1. I/O 2. GROUND 3. I/O 4. I/O 5. VCC 6. I/O
STYLE 13: PIN 1. GATE 1 2. SOURCE 2 3. GATE 2 4. DRAIN 2 5. SOURCE 1 6. DRAIN 1	STYLE 14: PIN 1. ANODE 2. SOURCE 3. GATE 4. CATHODE/DRAIN 5. CATHODE/DRAIN 6. CATHODE/DRAIN		TYLE 16: PIN 1. ANODE/CATHODE 2. BASE 3. EMITTER 4. COLLECTOR 5. ANODE 6. CATHODE	STYLE 17: PIN 1. EMITTER 2. BASE 3. ANODE/CATHODE 4. ANODE 5. CATHODE 6. COLLECTOR	

DOCUMENT NUMBER:	98ASB14888C Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TSOP-6 3.00x1.50x0.90, 0.95P		PAGE 2 OF 2	
·				

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>