Power MOSFET

30 V, 55 A, Single N-Channel, DPAK/IPAK

Features

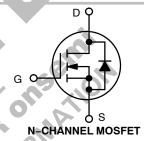
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- Three Package Variations for Design Flexibility
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- CPU Power Delivery
- DC-DC Converters
- Recommended for High Side (Control)

MAXIMUM RATINGS (T_{.I} = 25°C unless otherwise stated)

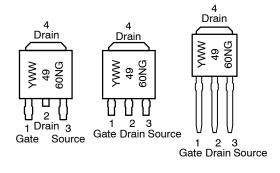
Parameter			Symbol	Value	Unit
Drain-to-Source Vo	tage		V _{DSS}	30	V
Gate-to-Source Vol	Gate-to-Source Voltage				V
Continuous Drain Current R _{θJA} (Note 1)		$T_A = 25$ °C $T_A = 85$ °C	O_	11.1 8.0	A
Power Dissipation R _{θJA} (Note 1)		T _A = 25°C	P _D	1.68	W
Continuous Drain Current R _{θJA} (Note 2)	Steady State	$T_A = 25^{\circ}C$ $T_A = 85^{\circ}C$	ID	8.9 6.4	Α
Power Dissipation R _{0JA} (Note 2)	State	T _A = 25°C	$P_{\mathbb{D}}$	1.07	W
Continuous Drain Current R _{θJC} (Note 1)		$T_{C} = 25^{\circ}C$ $T_{C} = 85^{\circ}C$	ľD	55 40	Α
Power Dissipation $R_{\theta JC}$ (Note 1)		T _C = 25°C	P_{D}	35.71	W
Pulsed Drain Current	t _p =10μs	T _A = 25°C	I _{DM}	137	Α
Current Limited by P	ackage	$T_A = 25^{\circ}C$	1 _{DmaxPkg}	45	Α
Operating Junction a Temperature	ınd Storage		T _J , T _{STG}	-55 to +175	°C
Source Current (Boo	Source Current (Body Diode)				Α
Drain to Source dV/dt			dV/dt	6	V/ns
Single Pulse Drain-to-Source Avalanche Energy (T_J = 25°C, V_{DD} = 50 V, V_{GS} = 10 V, I_L = 32 A_{pk} , L = 0.1 mH, R_G = 25 Ω)			EAS	51.2	mJ
Lead Temperature for (1/8" from case for 1		Purposes	TL	260	°C


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX	
30 V	8.0 mΩ @ 10 V	55 A	
	12.7 m Ω @ 4.5 V	55 K	



CASE 369AA **DPAK** (Bent Lead) STYLE 2

CASE 369AC 3 IPAK (Straight Lead)

CASE 369D **IPAK** (Straight Lead DPAK)

MARKING DIAGRAMS & PIN ASSIGNMENTS

= Year ww = Work Week 4960N = Device Code = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ heta JC}$	3	°C/W
Junction-to-TAB (Drain)	$R_{\theta JC-TAB}$	3.5	
Junction-to-Ambient - Steady State (Note 1)	$R_{ heta JA}$	74.5	
Junction-to-Ambient - Steady State (Note 2)	$R_{ heta JA}$	116.5	

- Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•					
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J			25		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V},$ $V_{DS} = 24 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$ $T_{J} = 125^{\circ}\text{C}$			1.0	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$		1	±100	nA
ON CHARACTERISTICS (Note 3)			~	'/O'.		
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	1.5		2.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	COAIN	71/11	5.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ V}$ $I_D = 30 \text{ A}$	*	6.1	8.0	mΩ
		I _D = 15 A		6.1		
		V _{GS} = 4.5 V I _D = 30 A		10	12.7	mΩ
		I _D = 15 A		10		
Forward Transconductance	9FS	V _{DS} = 1.5 V, I _D = 15 A		48		S
CHARGES, CAPACITANCES AND GATE RI	SISTANCE	18 19 V				
Input Capacitance	C _{ISS}			1300		
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 15 V		342		pF
Reverse Transfer Capacitance	C _{RSS}			169		
Total Gate Charge	Q _{G(TOT)}			11		
Threshold Gate Charge	Q _{G(TH)}	V 45VV 45VI 00A		1.2		-0
Gate-to-Source Charge	Q_GS	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_D = 30 \text{ A}$		4.0		nC
Gate-to-Drain Charge	Q_{GD}			4.7		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 15 V, I _D = 30 A		22		nC
SWITCHING CHARACTERISTICS (Note 4)						_
Turn-On Delay Time	t _{d(ON)}			12		
Rise Time	t _r	V _{GS} = 4.5 V, V _{DS} = 15 V,		20		
Turn-Off Delay Time	t _{d(OFF)}	$I_D = 15 \text{ A}, R_G = 3.0 \Omega$		15		ns
	t	i				

- 3. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.
- 4. Switching characteristics are independent of operating junction temperatures.
 5. Assume terminal length of 110 mils.

Fall Time

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

t _{d(ON)}						
t _r				7.0		ns
-	V_{GS} = 11.5 V, V_{DS} = 15 V, I_{D} = 15 A, R_{G} = 3.0 Ω			17		
t _{d(OFF)}				22		
t _f				3.0		
rics						
V_{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.9	1.2	
	I _S = 30 A	T _J = 125°C		0.76		V
t _{RR}	$V_{GS} = 0 \text{ V, dIS/dt} = 100 \text{ A/µs,}$ $I_{S} = 30 \text{ A}$			13.0		ns
t _a				7.0		
t _b				6.0		
Q _{RR}				4.0		nC
LS				2.49		nΗ
L _D			6	0.0164		
L _D	$T_A = 25^\circ$	C		1.88		1
L _G		W. 0	.0	3.46		
Rg	.0		111.	1.0		Ω
eycle ≤ 2%. nt of operating ju	unction temperatures.	O INFO				
	t_{f} FICS V_{SD} t_{RR} t_{a} t_{b} Q_{RR} L_{S} L_{D} L_{G} R_{G} $eycle \leq 2\%.$	t _f VSD VGS = 0 V, IS = 30 A t _{RR} t _a V _{GS} = 0 V, dIS/dt = I _S = 30 A L _S L _D L _D L _G R _G	TICS	TICS	TICS $ \begin{array}{ c c c c c c }\hline & t_f & & & & & & & & & & & & & \\\hline & V_{SD} & V_{GS} = 0 \ V, & & & & & & & & & & & & \\\hline & V_{SD} & V_{GS} = 0 \ V, & & & & & & & & & & & \\\hline & V_{GS} = 30 \ A & & & & & & & & & & & \\\hline & t_{RR} & & & & & & & & & & & \\\hline & t_{RR} & & & & & & & & & & & \\\hline & t_{A} & & V_{GS} = 0 \ V, \ dIS/dt = 100 \ A/\mu s, & & & & & & & & \\\hline & t_{B} & & & & & & & & & & \\\hline & V_{GS} = 0 \ V, \ dIS/dt = 100 \ A/\mu s, & & & & & & & & \\\hline & t_{B} & & & & & & & & & \\\hline & V_{GS} = 30 \ A & & & & & & & & \\\hline & & L_{S} & & & & & & & & \\\hline & & L_{S} & & & & & & & & \\\hline & L_{S} & & & & & & & & & \\\hline & L_{D} & & & & & & & & & \\\hline & L_{D} & & & & & & & & & \\\hline & L_{D} & & & & & & & & & \\\hline & L_{G} & & & & & & & & & \\\hline & L_{G} & & & & & & & & & \\\hline & & & & & & & & & $	TICS VSD VGS = 0 V, TJ = 25°C 0.9 1.2 TJ = 125°C 0.76 TJ = 125°C T

ORDERING INFORMATION

	Device	Package	Shipping [†]
NTD4960NT4G		DPAK (Pb-Free)	2500 / Tape & Reel
NTD4960N-1G		IPAK (Pb-Free)	75 Units / Rail
NTD4960N-35G		IPAK Trimmed Lead (Pb-Free)	75 Units / Rail

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL PERFORMANCE CURVES

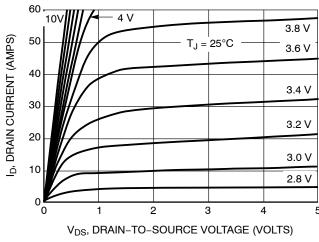


Figure 1. On-Region Characteristics

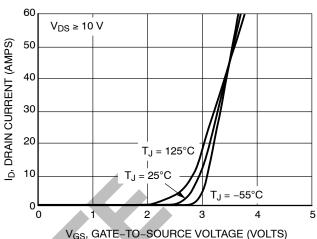


Figure 2. Transfer Characteristics

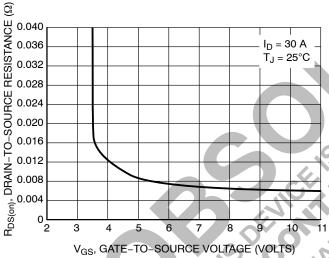


Figure 3. On-Resistance vs. Gate-to-Source Voltage

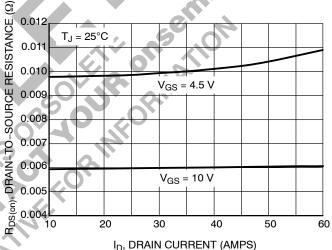


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

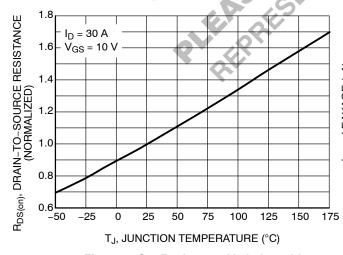


Figure 5. On–Resistance Variation with Temperature

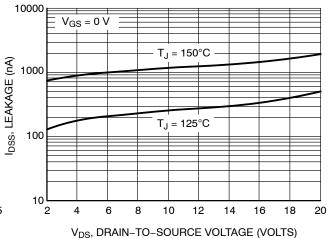


Figure 6. Drain-to-Source Leakage Current vs. Drain Voltage

TYPICAL PERFORMANCE CURVES

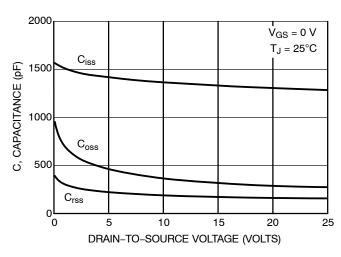


Figure 7. Capacitance Variation

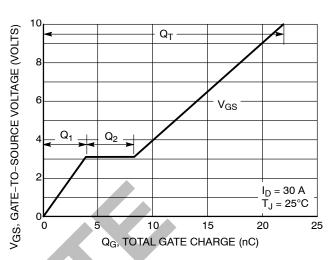


Figure 8. Gate-To-Source and Drain-To-Source
Voltage vs. Total Charge

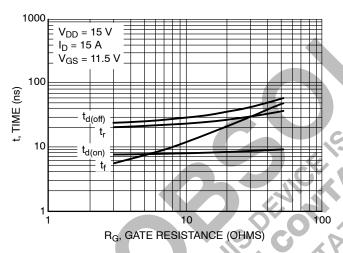


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

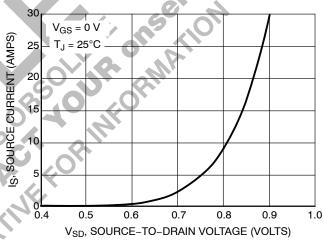


Figure 10. Diode Forward Voltage vs. Current

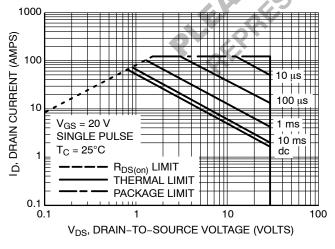


Figure 11. Maximum Rated Forward Biased Safe Operating Area

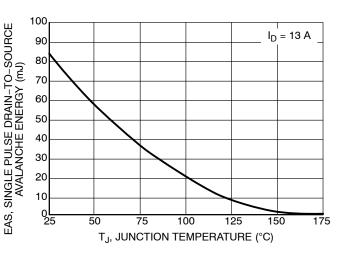
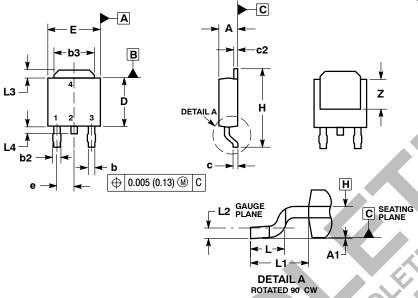



Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature

PACKAGE DIMENSIONS

DPAK (SINGLE GUAGE)

CASE 369AA-01 **ISSUE B**

NOTES:

- NOTES:

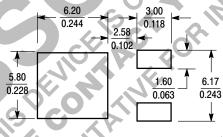
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: INCHES.

 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.

 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.

 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

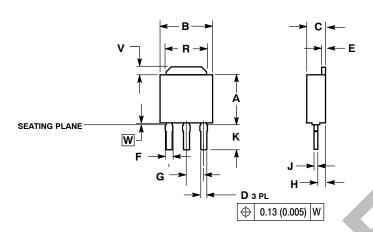

 6. DATUMS A AND B ARE DETERMINED AT DATUM
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

	INC	HES	MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.030	0.045	0.76	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29 BSC	
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.108	REF	2.74	REF
L2	0.020	0.020 BSC		BSC
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE

4. DRAIN

SOLDERING FOOTPRINT*

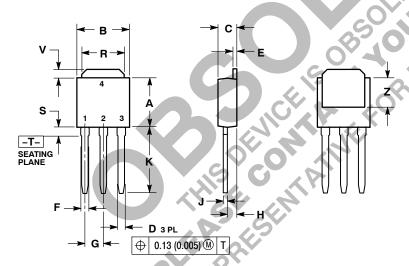

 $\left(\frac{\text{mm}}{\text{inches}}\right)$ SCALE 3:1

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

3 IPAK, STRAIGHT LEAD

CASE 369AC-01 **ISSUE O**


NOTES:

- 1.. DIMENSIONING AND TOLERANCING
- PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
- SEATING PLANE IS ON TOP OF DAMBAR POSITION.
- DIMENSION A DOES NOT INCLUDE DAMBAR POSITION OR MOLD GATE.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.22
В	0.250	0.265	6.35	6.73
C	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
E	0.018	0.023	0.46	0.58
E	0.037	0.043	0.94	1.09
G	0.090	BSC	2.29	BSC
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.134	0.142	3.40	3.60
R	0.180	0.215	4.57	5.46
٧	0.035	0.050	0.89	1.27
W	0.000	0.010	0.000	0.25

IPAK (STRAIGHT LEAD DPAK)

CASE 369D-01 **ISSUE B**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
E	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090	BSC	2.29 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
V	0.035	0.050	0.89	1.27
Z	0.155		3.93	

STYLE 2:

PIN 1. GATE

- DRAIN
 SOURCE
- DRAIN

ON Semiconductor and 👊 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative