

MOSFET - Single N-Channel

100 V, 9.0 mΩ, 60 A

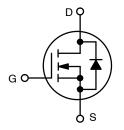
NTBS9D0N10MC

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- Lowers Switching Noise/EMI
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Power Tools, Battery Operated Vacuums
- UAV/Drones, Material Handling
- BMS/Storage, Home Automation


MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	100	V
Gate-to-Source Voltage	Э		V _{GS}	±20	V
Continuous Drain Current R _{0JC} (Note 2)	Steady State T _C = 25°C		I _D	60	Α
Power Dissipation R _{θJC} (Note 2)			P _D	68	W
Continuous Drain Current $R_{\theta JA}$ (Notes 1, 2)	Steady State T _A = 25°C		Ι _D	14	Α
Power Dissipation R _{θJA} (Notes 1, 2)	State		P _D	3.8	W
Pulsed Drain Current	$T_C = 25^{\circ}C, t_p = 100 \mu s$		I _{DM}	239	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Source Current (Body Diode)			I _S	57	Α
Single Pulse Drain-to-Source Avalanche Energy (I _L = 11 A _{pk} , L = 3 mH)		E _{AS}	181.5	mJ	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		TL	260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Surface-mounted on FR4 board using a 1 in², 2 oz. Cu pad.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
100 V	9.0 mΩ @ 10 V	60 A

N-CHANNEL MOSFET

CASE 418AJ

S D²PAK3 TO-263

MARKING DIAGRAM

AYWWZZ NTBS9D0 N10MC

A = Assembly Location

Y = Year WW = Work Week ZZ = Lot Traceability

NTBS9D0N10MC = Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping [†]
NTBS9D0N10MC	D ² PAK (Pb-Free)	800 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Note 2)	$R_{ hetaJC}$	2.2	°C/W
Junction-to-Ambient - Steady State (Notes 1, 2)	$R_{ hetaJA}$	40	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS						1	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		100			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 250 μA, referenced to 25°C			56		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 80 V	T _J = 25°C			1	μΑ
			T _J = 150°C			100	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{GS} = \pm 20 \text{ V}, V_{I}$	_{OS} = 0 V			±100	nA
ON CHARACTERISTICS (Note 3)					•	•	
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I _D =	131 μΑ	2.0	3.0	4.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	I _D = 131 μA, referen	ced to 25°C		-9.6		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D	= 23 A		7.8	9.0	mΩ
		V _{GS} = 6 V, I _D =	= 12 A		12	22.2	
Forward Transconductance	9 _{FS}	V _{DS} = 10 V, I _D	= 23 A		59		S
Gate-Resistance	R_{G}	T _A = 25°C			0.6		Ω
CHARGES & CAPACITANCES	<u> </u>						
Input Capacitance	C _{ISS}				1695		pF
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 50 V			935		1
Reverse Transfer Capacitance	C _{RSS}				13		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 10 \text{ V}, V_{DS} = 50 \text{ V},$ $I_{D} = 23 \text{ A}$ $V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$			23		nC
Threshold Gate Charge	Q _{G(TH)}				5		
Gate-to-Source Charge	Q _{GS}				8		
Gate-to-Drain Charge	Q_{GD}				5		
Output Charge	Q _{OSS}				59		
SWITCHING CHARACTERISTICS, V _{GS} = 10					l .	<u>I</u>	<u>I</u>
Turn-On Delay Time	t _{d(ON)}				15		ns
Rise Time	t _r	Vaa - 10 V Vaa	- 50 V		6		
Turn-Off Delay Time	t _{d(OFF)}	V_{GS} = 10 V, V_{DS} = 50 V, I_D = 23 A, R_G = 6 Ω			21		
Fall Time	t _f				7		
DRAIN-SOURCE DIODE CHARACTERISTIC					l		
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V, I _S = 23 A, T _J = 25°C			0.87	1.2	V
J -		V _{GS} = 0 V, I _S = 23 A			0.72		1
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dl _S /dt = 300 A/μs, l _S = 12 A			29		ns
Reverse Recovery Charge	Q _{RR}				61		nC
Reverse Recovery Time	t _{RR}	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			23		ns
Reverse Recovery Charge	Q _{RR}	$V_{GS} = 0 \text{ V, } dI_{S}/dt = 1000 \text{ A/}\mu\text{s,}$ $I_{S} = 12 \text{ A}$			147		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{3.} Switching characteristics are independent of operating junction temperature

TYPICAL CHARACTERISTICS

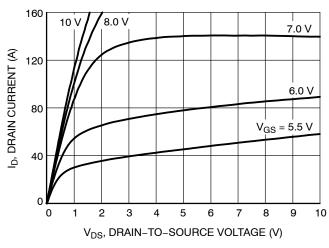


Figure 1. On-Region Characteristics

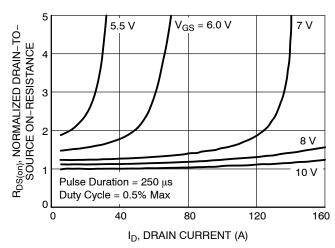


Figure 2. Normalized On–Resistance vs. Drain Current and Gate Voltage

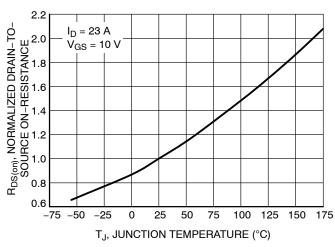


Figure 3. Normalized On–Resistance vs. Junction Temperature

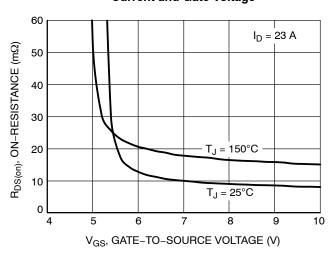


Figure 4. On-Resistance vs. Gate-to-Source Voltage

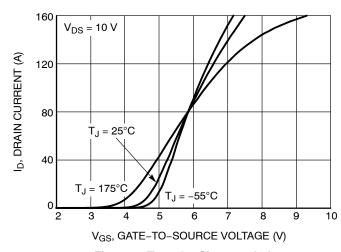


Figure 5. Transfer Characteristics

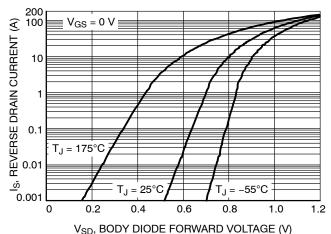


Figure 6. Source-to-Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS

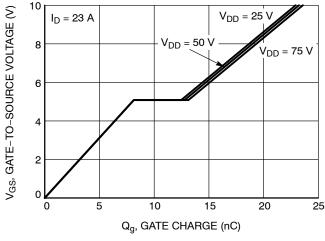


Figure 7. Gate Charge Characteristics

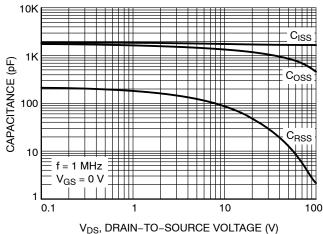


Figure 8. Capacitance vs. Drain-to-Source Voltage

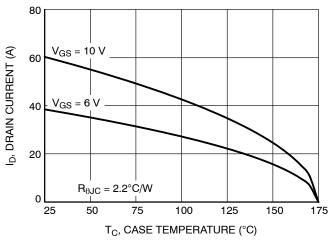


Figure 9. Drain Current vs. Case Temperature

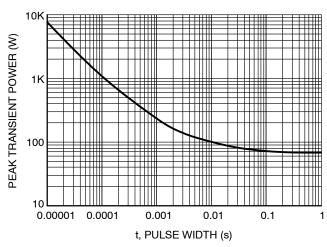


Figure 10. Peak Power

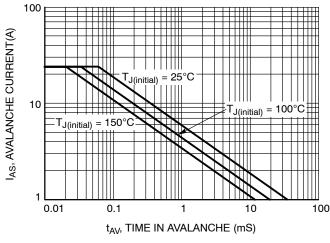


Figure 11. Unclamped Inductive Switching Capability

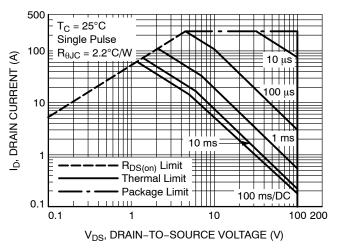


Figure 12. Forward Bias Safe Operating Area

TYPICAL CHARACTERISTICS

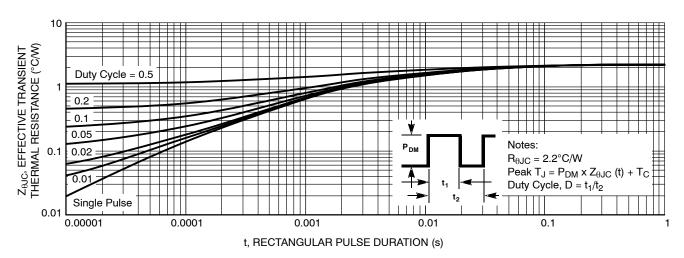
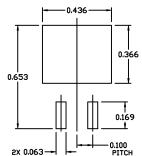


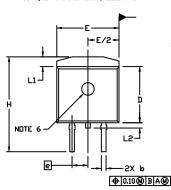
Figure 13. Transient Thermal Impedance

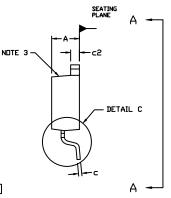


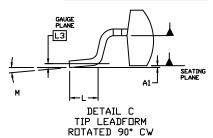
D²PAK-3 (TO-263, 3-LEAD) CASE 418AJ

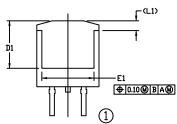
ISSUE F

DATE 11 MAR 2021

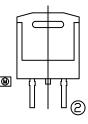


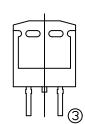

RECOMMENDED MOUNTING FOOTPRINT

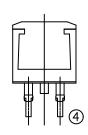

NOTES


- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- CONTROLLING DIMENSION: INCHES
- CHAMFER OPTIONAL
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.005 PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE DUTERMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.
- 5. THERMAL PAD CONTOUR IS OPTIONAL WITHIN DIMENSIONS E, L1, D1, AND E1.
- 6. OPTIONAL MOLD FEATURE.
- 7. ①,② ... OPTIONAL CONSTRUCTION FEATURE CALL DUTS.

	INCHES		MILLIN	MILLIMETERS		
DIM	MIN.	MAX.	MIN.	MAX.		
A	0.160	0.190	4.06	4.83		
A1	0.000	0.010	0.00	0.25		
ھ	0.020	0.039	0.51	0.99		
u	0.012	0.029	0.30	0.74		
5	0.045	0.065	1.14	1.65		
D	0.330	0.380	8.38	9.65		
D1	0.260		6.60			
E	0.380	0.420	9.65	10.67		
E1	0.245	-	6.22			
e	0.100 BSC		2.54	2.54 BSC		
Ξ	0.575	0.625	14.60	15.88		
٦	0.070	0.110	1.78	2.79		
L1		0.066		1.68		
L2		0.070		1.78		
L3	0.010 BSC		0.25 BSC			
М	0*	8*	0*	8*		







VIEW A-A

VIEW A-A OPTIONAL CONSTRUCTIONS

AYWW

XXXXXXXXX

Rectifier

AKA

GENERIC MARKING DIAGRAMS*

XXXXXX

XXYMW

SSG

XXXXXX = Specific Device Code = Assembly Location Α

WL = Wafer Lot

= Year ww = Work Week

W = Week Code (SSG) Μ = Month Code (SSG)

G = Pb-Free Package = Polarity Indicator **AKA**

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present. Some products may not follow the Generic Marking.

IC

XXXXXXXX

AWLYWWG

98AON56370E

Standard

XXXXXXXX

AYWW

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

DESCRIPTION:

DOCUMENT NUMBER:

D²PAK-3 (TO-263, 3-LEAD)

PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales