Small Signal MOSFET

20 V, 238 mA, Single, N–Channel, Gate ESD Protection, SC–75

Features

- Low Gate Charge for Fast Switching
- Small 1.6 x 1.6 mm Footprint
- ESD Protected Gate
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Power Management Load Switch
- Level Shift
- Portable Applications such as Cell Phones, Media Players, Digital Cameras, PDA's, Video Games, Hand Held Computers, etc.

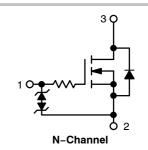
MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

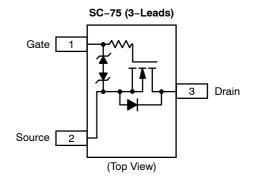
Parameter		Symbol	Value	Unit
Drain-to-Source Voltage		V _{DSS}	20	V
Gate-to-Source Voltage		V _{GS}	±10	V
Continuous Drain Current (Note 1)	Steady State = 25°C	۱ _D	238	mA
Power Dissipation (Note 1)	Steady State = 25°C	P _D	300	mW
Pulsed Drain Current	t _P ≤ 10 μs	I _{DM}	714	mA
Operating Junction and Storage Temperature		T _J , T _{STG}	–55 to 150	°C
Continuous Source Current (Body Diode)		I _{SD}	238	mA
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		ΤL	260	°C

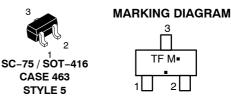
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

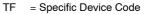
THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	416	°C/W


1. Surface-mounted on FR4 board using 1 in sq. pad size (Cu area = 1.127 in sq. [1 oz] including traces).


ON Semiconductor®


http://onsemi.com


V _{(BR)DSS}	R _{DS(on)} Typ @ V _{GS}	I <mark>D</mark> MAX (Note 1)
20 V	1.5 Ω @ 4.5 V	238 mA
201	2.2 Ω @ 2.5 V	200 11/1

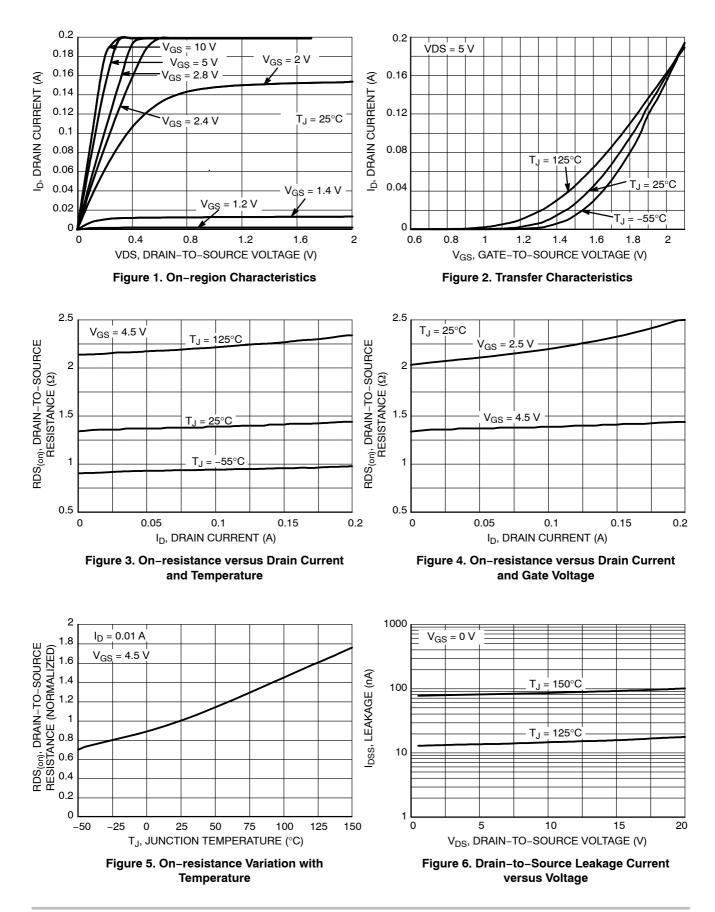
PIN CONNECTIONS

M = Date Code

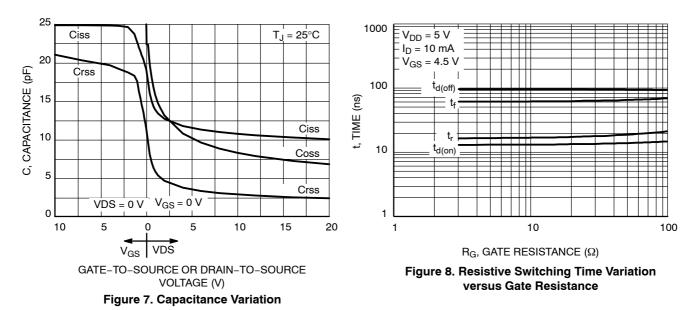
= Pb-Free Package

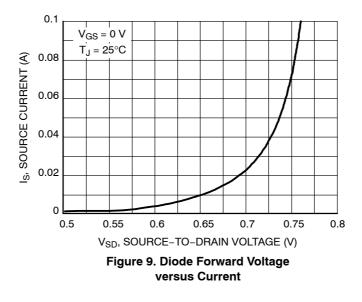
(Note: Microdot may be in either location)

ORDERING INFORMATION


See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)


Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
OFF CHARACTERISTICS	·					
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 100 μ A	20			V
Zero Gate Voltage Drain Current	I _{DSS}	V_{GS} = 0 V, V_{DS} = 20 V			1.0	μA
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS} = ±10 V			±100	μA
ON CHARACTERISTICS (Note 2)						
Gate Threshold Voltage	V _{GS(TH)}	V_{DS} = 3 V, I_D = 100 μ A	0.5	1.0	1.5	V
Drain-to-Source On Resistance	R _{DS(on)}	V_{GS} = 4.5 V, I _D = 10 mA		1.5	3.0	
		V _{GS} = 2.5 V, I _D = 10 mA		2.2	3.5	Ω
Forward Transconductance	g fs	V _{DS} = 3 V, I _D = 10 mA		80		mS
CAPACITANCES						
Input Capacitance	C _{ISS}			11.5	20	pF
Output Capacitance	C _{OSS}	V _{DS} = 5 V, f = 1 MHz, V _{GS} = 0 V		10	15	
Reverse Transfer Capacitance	C _{RSS}			3.5	6.0	
SWITCHING CHARACTERISTICS (Note 3)						
Turn-On Delay Time	t _{d(ON)}			13		ns
Rise Time	t _r	V_{GS} = 4.5 V, V_{DS} = 5 V, I _D = 10 mA, R _G = 10 Ω		15		
Turn-Off Delay Time	t _{d(OFF)}			98		ns
Fall Time	t _f			60		1
DRAIN-SOURCE DIODE CHARACTERISTICS	•			•		
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 10 mA		0.66	0.8	V
Forward Diode Voltage 2. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 29		V _{GS} = 0 V, I _S = 10 mA		0.66	0.8	_


Pulse Test: pulse width ≤ 300 µs, duty cycle ≤ 2%.
Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES

ORDERING INFORMATION

Order Number	Package	Shipping [†]
NTA4015NT1G	SC-75 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

SC75-3 1.60x0.80x0.80, 1.00P **CASE 463 ISSUE H** DATE 01 FEB 2024 NOTES: Α D DIMENSIONING AND TOLERANCING CONFORM 1. В TO ASME Y14.5-2018. ALL DIMENSION ARE IN MILLIMETERS. 2. F MILLIMETERS F DIM MIN. MAX. NOM. 0.70 0.800.90 А 3X b Α1 0.00 0.05 0.10 \oplus 0.20 \oplus C A B е A2 0.80 REF. 0.15 0.20 b 0.30 TOP VIEW С 0.10 0.15 0.25 A2 D 1.55 1.60 1.65 E 1.50 1.60 1.70 E1 0.70 0.80 0.90 С 1.00 BSC е SEATING Ċ A1 L 0.20 PLANE 0.10 0.15 -0.356 END VIEW SIDE VIEW GENERIC **MARKING DIAGRAM*** 1.803 0.787XXM XX = Specific Device Code Μ = Date Code 0.508 = Pb-Free Package 1.000 *This information is generic. Please refer to device data sheet for actual part marking. RECOMMENDED MOUNTING FOOTPRINT* Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY not follow the Generic Marking. AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES STYLE 3: PIN 1. ANODE 2. ANODE STYLE 1: PIN 1. BASE 2. EMITTER STYLE 2: PIN 1. ANODE 2. N/C REFERENCE MANUAL, SOLDERRM/D. 3. COLLECTOR 3. CATHODE 3. CATHODE STYLE 4: STYLE 5: PIN 1. CATHODE 2. CATHODE PIN 1. GATE 2. SOURCE 3. ANODE 3. DRAIN Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98ASB15184C Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SC75-3 1.60x0.80x0.80, 1.00P PAGE 1 OF 1 onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019

```
www.onsemi.com
```

ONSEM¹.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>