NOM02A4-AG01G

200DPI Contact Image Sensor Module

Description
The NOM02A4-AG01G contact image sensor (CIS) module integrates a green LED light source, lens and image sensor in a compact housing. The module is designed for document scanning, mark reading, gaming and office automation equipment applications and is suitable for scanning documents up to 216 mm wide. An analog video output achieves a scanning rate of 1.728 ms/line. The NOM02A4-AG01G module employs proprietary CMOS image sensing technology from ON Semiconductor to achieve high-speed performance and high sensitivity.

Features
• Light Source, Lens and Sensor are Integrated Into a Single Module
• 216 mm Scanning Width at 7.9 dots per mm Resolution
• 1.728 msec/Line Scanning Speed @ 1.0 MHz Pixel Rate
• Analog Video Output
• Supports A4 Paper Size at up to 15 Pages per Minute
• Green LED Light Source
• Wide Dynamic Range
• Compact 232.1 mm x 19.2 mm x 13.7 mm Module Housing
• Low Power
• Light Weight 2.1 oz Packaging
• These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications
• Gaming Machines
• Fax Machines and Document Scanning
• Mark Readers Including Balloting and Test Scoring
• Office Automation Equipment

Figure 1. Typical Scanner Application

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.
Table 1. ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
<th>Shipping Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOM02A4–AG01G</td>
<td>(Pb-free)</td>
<td>100 per packing carton</td>
</tr>
</tbody>
</table>

Table 2. PIN FUNCTION DESCRIPTION

<table>
<thead>
<tr>
<th>Pin</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VOUT</td>
<td>Analog Video Output</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>VDD</td>
<td>+5 V power supply</td>
</tr>
<tr>
<td>4</td>
<td>VSS</td>
<td>−5 V to −12 V power supply</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>SP</td>
<td>Shift register start pulse</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>8</td>
<td>CP</td>
<td>Sampling clock pulse</td>
</tr>
<tr>
<td>9</td>
<td>GLED</td>
<td>Ground for the LED light source</td>
</tr>
<tr>
<td>10</td>
<td>VLED</td>
<td>Power supply for the LED light source</td>
</tr>
</tbody>
</table>
Table 3. ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltage</td>
<td>V_{DD}</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V_{SS}</td>
<td>−15</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V_{LED}</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>Power supply current</td>
<td>I_{LED}</td>
<td>600</td>
<td>mA</td>
</tr>
<tr>
<td>Input voltage range for SP, CP</td>
<td>V_{in}</td>
<td>−0.5 to $V_{DD} + 0.5$</td>
<td>V</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{STG}</td>
<td>−20 to 75</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Humidity, Non–Condensing</td>
<td>H_{STG}</td>
<td>10 to 90</td>
<td>%</td>
</tr>
<tr>
<td>ESD Capability, Contact Discharge (Note 1)</td>
<td>E_{SDHM}</td>
<td>± 2</td>
<td>kV</td>
</tr>
</tbody>
</table>

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. This module assembly has been ESD tested to IEC61000−4–2 (HBM) Contact Discharge

Table 4. RECOMMENDED OPERATING RANGES

(Unless otherwise specified, these specifications apply $T_a = 25^\circ$C) (Note 2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltage (Note 3)</td>
<td>V_{DD}</td>
<td>4.5</td>
<td>5</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V_{SS}</td>
<td>−12</td>
<td>−5</td>
<td>−4.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V_{LED}</td>
<td>4.5</td>
<td>5</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Power supply current</td>
<td>I_{DD}</td>
<td>53</td>
<td>60</td>
<td>67</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>I_{SS}</td>
<td>5.0</td>
<td>6.0</td>
<td>7.0</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>I_{LED}</td>
<td>400</td>
<td>450</td>
<td>500</td>
<td>mA</td>
</tr>
<tr>
<td>Low level input voltage for SP, CP</td>
<td>V_{IL}</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>High level input voltage for SP, CP</td>
<td>V_{IH}</td>
<td>4.5</td>
<td>5.0</td>
<td>$V_{DD} + 0.3$</td>
<td>V</td>
</tr>
<tr>
<td>Line scanning rate (Note 4)</td>
<td>T_{int}</td>
<td>6.91</td>
<td>1.728</td>
<td>0.864</td>
<td>ms</td>
</tr>
<tr>
<td>Clock frequency (Note 5)</td>
<td>f</td>
<td>0.25</td>
<td>1.0</td>
<td>2.0</td>
<td>MHz</td>
</tr>
<tr>
<td>Clock period</td>
<td>t_0</td>
<td>0.5</td>
<td>1.0</td>
<td>4.0</td>
<td>µs</td>
</tr>
<tr>
<td>Clock pulse width (Note 6)</td>
<td>t_w</td>
<td>125</td>
<td>250</td>
<td>1000</td>
<td>ns</td>
</tr>
<tr>
<td>Clock pulse high duty cycle</td>
<td>DC_{CP}</td>
<td>20</td>
<td>25</td>
<td>60</td>
<td>%</td>
</tr>
<tr>
<td>Start pulse width (Note 6)</td>
<td>t_wSP</td>
<td>150</td>
<td>180</td>
<td>480</td>
<td>ns</td>
</tr>
<tr>
<td>Start pulse setup time</td>
<td>t_{su}</td>
<td>20</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Start pulse hold time</td>
<td>t_h</td>
<td>20</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Prohibit crossing time (Note 7)</td>
<td>t_{prh}</td>
<td>20</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Clock to Video output propagation delay rising</td>
<td>t_{pcor}</td>
<td>150</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Clock to Video output propagation delay falling</td>
<td>t_{pcorf}</td>
<td>20</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_{op}</td>
<td>0</td>
<td>50</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Operating Humidity, Non–Condensing</td>
<td>H_{op}</td>
<td>10</td>
<td>60</td>
<td></td>
<td>%</td>
</tr>
</tbody>
</table>

2. Refer to Figure 3 for more information on AC characteristics
3. V_{LED} directly affects illumination intensity, which directly affects V_{OUT}.
4. T_{int} is the line scanning rate or integration time. T_{int} is determined by the interval between two start pulses. The clock is proportional to T_{int}.
5. Main clock frequency (f) corresponds to the video sampling frequency.
6. Min, Typ, Max specifications reflect operation at the corresponding Min, Typ, Max clock frequency.
7. Prohibit crossing time is to insure that two start pulses are not supplied in the same scan line time. SP may only be active high during one falling edge of CP for any given scan.
Table 5. PHYSICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Typ</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan width</td>
<td>PD_w</td>
<td>216</td>
<td>mm</td>
</tr>
<tr>
<td>Number of Photo Detector Arrays</td>
<td>PDAn</td>
<td>27</td>
<td>arrays</td>
</tr>
<tr>
<td>Number of Photo Detectors</td>
<td>PDn</td>
<td>1728</td>
<td>elements</td>
</tr>
</tbody>
</table>

Table 6. PHYSICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel pitch</td>
<td>PDsp</td>
<td>125</td>
<td>527</td>
<td>C0109</td>
<td>μm</td>
</tr>
<tr>
<td>Inter–array spacing</td>
<td>PDAsp</td>
<td>150</td>
<td>180</td>
<td>210</td>
<td>C0109</td>
</tr>
<tr>
<td>Inter–array vertical alignment</td>
<td>PDA_vxp</td>
<td>−40</td>
<td>0</td>
<td>40</td>
<td>C0109</td>
</tr>
<tr>
<td>Green LED peak wavelength</td>
<td>(\lambda_p)</td>
<td>561</td>
<td>575</td>
<td>nm</td>
<td></td>
</tr>
</tbody>
</table>

Table 7. ELECTRO–OPTICAL CHARACTERISTICS TEST CONDITIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltage</td>
<td>V_DD</td>
<td>5.0</td>
<td>V</td>
</tr>
<tr>
<td>V_SS</td>
<td>5.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_LED</td>
<td>5.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Clock frequency</td>
<td>f</td>
<td>1.0</td>
<td>MHz</td>
</tr>
<tr>
<td>Clock pulse high duty cycle</td>
<td>DC_CP</td>
<td>25</td>
<td>%</td>
</tr>
<tr>
<td>Line scanning rate</td>
<td>T_int</td>
<td>1.728</td>
<td>ms</td>
</tr>
<tr>
<td>LED arrays pulsed time on (Note 8)</td>
<td>LED_Ton</td>
<td>26</td>
<td>ms</td>
</tr>
<tr>
<td>LED arrays pulsed time off (Note 8)</td>
<td>LED_Toff</td>
<td>356</td>
<td>ms</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_op</td>
<td>25</td>
<td>°C</td>
</tr>
</tbody>
</table>

8. Production tested with pulsing LEDs.
Table 8. ELECTRO–OPTICAL CHARACTERISTICS (Unless otherwise specified, these specifications were achieved with the test conditions defined in Table 7)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bright analog output voltage (Note 9)</td>
<td>(V_{pavg})</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>V</td>
</tr>
<tr>
<td>Bright output non–uniformity (Note 10)</td>
<td>(U_p)</td>
<td>–30</td>
<td></td>
<td>30</td>
<td>%</td>
</tr>
<tr>
<td>Bright output non–uniformity total (Note 11)</td>
<td>(U_{p\text{total}})</td>
<td>60</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Adjacent pixel non–uniformity (Note 12)</td>
<td>(U_{p\text{adj}})</td>
<td>25</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Dark output voltage (Note 13)</td>
<td>(V_d)</td>
<td>200</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Dark non–uniformity (Note 14)</td>
<td>(U_d)</td>
<td>200</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Modulation transfer function at 50 line pairs per in (lp/in) (Note 15)</td>
<td>MTF(_{50})</td>
<td>40</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Modulation transfer function at 100 line pairs per in (lp/in) (Notes 15, 16)</td>
<td>MTF(_{100})</td>
<td>20</td>
<td></td>
<td></td>
<td>%</td>
</tr>
</tbody>
</table>

9. \(V_{pavg} = \Sigma V_{p(n)}/1728\), where \(V_p\) is the pixel amplitude value of VOUT for a bright signal defined as a white document with LEDs turned on, \(n\) is the sequential pixel number in one scan line.

10. \(U_p = [(V_{pmax} - V_{pavg})/V_{pavg}] \times 100\%, or [V_{pavg} - V_{pmin})/V_{pavg}] \times 100\%, whichever is greater, where \(V_{pmax}\) is the maximum pixel voltage of any pixel at full bright \(V_{pmin}\) is the minimum pixel voltage of any pixel at full bright.

11. \(U_{p\text{total}} = [(V_{pmax} - V_{pmin})/V_{pavg}] \times 100\%.

12. \(U_{p\text{adj}} = \text{MAX} \left| \frac{V_{p(n)} - V_{p(n+1)}}{V_{p(n)}} \right| \times 100\%\), where \(U_{p\text{adj}}\) is the nonuniformity in percent between adjacent pixels for a bright background.

13. \(V_d\) is the pixel amplitude value of VOUT for a dark signal defined as a black document with LEDs turned off.

14. \(U_d = V_{dmax} - V_{dmin}\), where \(V_{dmax}\) is the maximum pixel voltage of any dark pixel with the LEDs turned off \(V_{dmin}\) is the minimum pixel voltage of any dark pixel with the LEDs turned off.

15. MTF = \([(V_{max} - V_{min})/(V_{max} + V_{min})] \times 100\%, where \(V_{max}\) is the maximum output voltage at the specified line pairs per inch (lp/in) \(V_{min}\) is the minimum output voltage at the specified lp/in.

16. For information only.

![Figure 3. Timing Diagram](http://onsemi.com)
Functional Description

The NOM02A4–AG01G module consists of 27 contact image sensors, each with 64 pixel elements, that are cascaded to provide 1728 photo-detectors with their associated multiplex switches and double–buffered digital shift register that controls its sequential readout. A buffer amplifies the video pixels from the image sensors and output the analog video signal of the module as shown in Figure 2. In operation, the sensors produce an analog image pixel signal (or video signal) proportional to the exposure on the corresponding picture elements on the document. The VOUT signal outputs 1728 pixels for each scan line. The first bit shifted out from VOUT during each scan represents the first pixel on the connector end of the module.

A pictorial of the NOM02A4–AG01G cross section view is shown in Figure 4. Mounted in the module is a one–to–one graded–index micro lens array that focuses the scanned document image onto the sensing plane. Illumination is accomplished by means of an integrated LED light source. All components are housed in a small plastic housing, which has a glass cover. The top surface of the glass acts as the focal point for the object being scanned and protects the imaging array, micro lens assembly and LED light source from dust.

Figure 4. Module Cross Section View

Connector Pin Out Description

Connections to the module are via a 2.4x14.50mm 10–pin connector (ECE part number EBW–PK23–P010L2–3Z) located at one end of the module as shown in the package drawing on page 8. The location of pin number 1 is indicated on the package drawing.

Scanner Applications

A typical use of the NOM02A4–AG01G module in scanner applications is shown in Figure 6. The document to be digitized is fed into the scanner where a sensor detects its presence. The scanner then operates the motor to move the paper under the contact image sensor module. The module illuminates the paper with internal LEDs and the image sensor pixel array detects the amount of reflected light and simultaneously measures a full line of pixels which are sampled and transferred to a FIFO for storage and conversion to a parallel output format. Once the pixel line is processed, the motor advances the paper and the next scan line is captured.

Figure 5 outlines the basic steps in the scanner control sequence. First the circuits are initialized and the scanner waits for a document to be detected, usually by a paper sensing switch. Then a start pulse and clock pulse are supplied to capture a line image. At the next clock pulse the first pixel value appears on the output. The pixel can be stored in a local line buffer memory. Subsequent clocks cause the remaining pixels to be shifted out and stored in the line buffer. Once the complete line has been shifted out it can be transferred to the host application and the system advances the paper and the line scan process repeats until the paper sensing switch indicates the document has passed completely through the scanner.

Device Marking and Barcode Description

Each module is marked with a tag that contains the part number, a number combining the manufacturing date code and serial number and a barcode. The barcode presents the date code and serial number in Interleave 2 of 5 barcode format as follows

YYMMSSSSSS

where
YY is the year,
MM is the month,
SSSSSS is the serial number.

Glass Lens Care

Precautions should be taken to avoid scratching or touching the glass lens. The glass lens may be cleaned with alcohol.
Figure 6. Typical Scanner Assembly
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS

IMAGE SENSOR MODULE
CASE MODAC
ISSUE A

DATE 11 MAY 2010

NOTES:
2. CONTROLLING DIMENSION: MILLIMETERS.
3. LEADING EDGE OF THE APPROACH ANGLE ON THE GLASS IS LOWER THAN THE TOP OF THE HOUSING.
4. BORE DEPTH IS 6.0 WITH A 0.3 LEAD-IN CHAMFER.
5. PIN HEADER, MODEL NUMBER EBW-PK23-P010L2-3Z, 1X10 PIN, PITCH 1.25.
6. GLASS IS GLUED ON ALL 4 SIDES.
7. GLASS THICKNESS IS 1.85.
8. USE M2.3 SELF TAPPING SCREWS FOR MOUNTING. TORQUE SCREWS BETWEEN 1.80 KGF-CM AND 2.00 KGF-CM.
9. DIMENSION D1 DENOTES THE SCAN LENGTH.
10. DIMENSION K DENOTES THE POSITION OF THE FIRST PIXEL.

<table>
<thead>
<tr>
<th>DIMENSIONS</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MIN</td>
</tr>
<tr>
<td>A1</td>
<td>5.45</td>
</tr>
<tr>
<td>A2</td>
<td>13.20</td>
</tr>
<tr>
<td>B</td>
<td>17.70</td>
</tr>
<tr>
<td>B1</td>
<td>18.90</td>
</tr>
<tr>
<td>B2</td>
<td>5.50</td>
</tr>
<tr>
<td>C</td>
<td>15.40</td>
</tr>
<tr>
<td>D</td>
<td>216.00</td>
</tr>
<tr>
<td>D1</td>
<td>216.00</td>
</tr>
<tr>
<td>E</td>
<td>2.10</td>
</tr>
<tr>
<td>F</td>
<td>112.50</td>
</tr>
<tr>
<td>G</td>
<td>34.80</td>
</tr>
<tr>
<td>H</td>
<td>5.70</td>
</tr>
<tr>
<td>J</td>
<td>5.30</td>
</tr>
<tr>
<td>K</td>
<td>5.30</td>
</tr>
<tr>
<td>L</td>
<td>6.00</td>
</tr>
</tbody>
</table>

DOCUMENT NUMBER: 98AON48436E
DESCRIPTION: IMAGE SENSOR MODULE

Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019