1 Ω R_{ON} DPST and Dual SPST Switches

The NLAS5213A and NLAS5213B are DPST and Dual SPST devices, respectively. They each consist of 2 single throw switches and are both designed for audio applications within portable devices. The NLAS5213A is controlled with a single enable pin while the NLAS5213B has two independent enables.

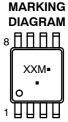
Both the NLAS5213A and NLAS5213B operate over a wide V_{CC} range, 1.65 V to 4.5 V, and maintain a very low R_{ON} : 1.3 Ω Max @ V_{CC} = 4.2 V. Each is available in a choice of two packages: US8 and UDFN8.

Features

- PST and Dual SPST Pinouts
- R_{ON} : 1.3 Ω Max @ V_{CC} = 4.2 V
- V_{CC} Range: 1.65 V to 4.5 V
- 8 kV Human Body Model ESD on I/O to GND
- UDFN8 or US8 Packages Available
- These are Pb-Free Devices

Typical Applications

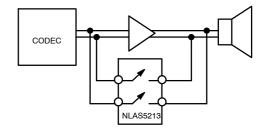
- Mobile Phones
- Portable Devices



ON Semiconductor®

http://onsemi.com

US8 US SUFFIX CASE 493


UDFN8 MU SUFFIX CASE 517AJ

XX = Device Code
M = Date Code
Device Pb-Free Package

(Note: Microdot may be in either location)

APPLICATION DIAGRAM

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 9 of this data sheet.

1

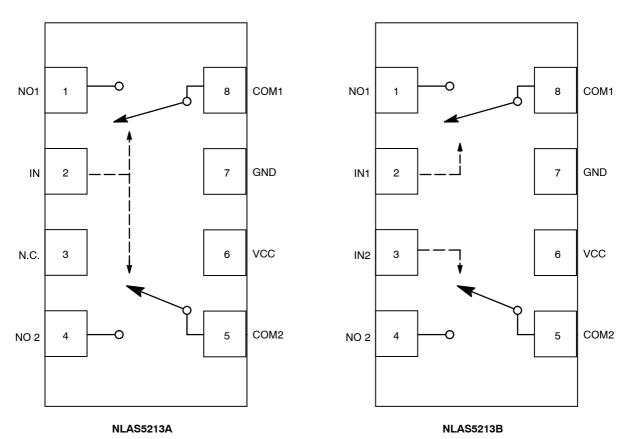


Figure 1. Functional Block Diagram Pinouts (UDFN8)

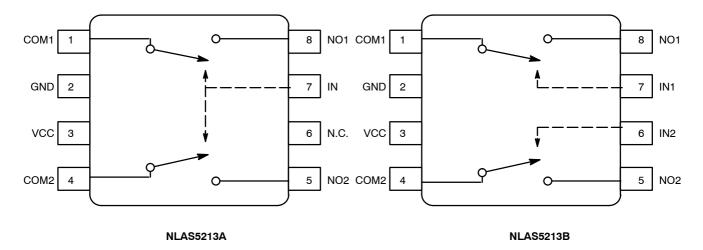


Figure 2. Functional Block Diagram Pinouts (US8)

NLAS5213A

Pi	in #					
UDFN8	US8	Name	Direction	Description		
1	8	NO1	I/O	Normally Open Signal Line of Switch 1		
2	7	IN	Input	Control Input		
3	6	N.C.	N/A	No Connect		
4	5	NO2	I/O	Normally Open Signal Line of Switch 2		
5	4	COM2	I/O	Common Signal Line of Switch 2		
6	3	V _{CC}	Input	Analog Supply Voltage		
7	2	GND	Input	Ground		
8	1	COM1	I/O	Common Signal Line of Switch 1		

NLAS5213B

Pi	n #			
UDFN8	US8	Name	Direction	Description
1	8	NO1	I/O	Normally Open Signal Line of Switch 1
2	7	IN1	Input	Control Input of Switch 1
3	6	IN2	Input	Control Input of Switch 2
4	5	NO2	I/O	Normally Open Signal Line of Switch 2
5	4	COM2	I/O	Common Signal Line of Switch 2
6	3	V _{CC}	Input	Analog Supply Voltage
7	2	GND	Input	Ground
8	1	COM1	I/O	Common Signal Line of Switch 1

NLAS5213A FUNCTION TABLE

IN	NO1, NO2
0	OFF
1	ON

NLAS5213B FUNCTION TABLE

IN	NO1, NO2
0	OFF
1	ON

OPERATING CONDITIONS

MAXIMUM RATINGS

Symbol	Pins	Parameter	Value	Condition	Unit
V _{CC}	V_{CC}	Positive DC Supply Voltage	-0.5 to 5.5		V
V _{IS}	NOx, NCx, COMx	Analog Signal Voltage	-0.5 to V _{CC} + 0.5		V
V _{IN}	IN1, IN2	Control Input Voltage	-0.5 to 5.5		V
I _{CC}	V_{CC}	Positive DC Supply Current	50		mA
I _{IS_CON}	NOx, NCx, COMx	Analog Signal Continues Current	±300	Closed Switch	mA
lis_pk	NOx, NCx, COMx	Analog Signal Peak Current	±500	10% Duty Cycle	mA
I _{IN}	IN	Control Input Current	±20		mA
T _{STG}		Storage Temperature Range	-65 to 150		ōС

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

RECOMMENDED OPERATING CONDITIONS*

Symbol	Pins	Parameter	Value	Condition	Unit
V _{CC}	V _{CC}	Positive DC Supply Voltage	1.65 to 4.5		V
V _{IS}	NOx, NCx, COMx	Analog Signal Voltage	0 to V _{CC}		V
V _{IN}	IN1, IN2	Control Input Voltage	0 to V _{CC}		V
T _A		Operating Temperature Range	-40 to 85		∘C

Minimum and maximum values are guaranteed through test or design across the **Recommended Operating Conditions**, where applicable. Typical values are listed for guidance only and are based on the particular conditions listed for each section, where applicable. These conditions are valid for all values found in the characteristics tables unless otherwise specified in the test conditions.

ESD PROTECTION

Symbol	Parameter	Value	Unit
ESD	Human Body Model I/O to GND All Pins	8.0 4.0	kV

DC ELECTRICAL CHARACTERISTICS

CONTROL INPUT (Typical: T = 25° C, $V_{CC} = 3.3 \text{ V}$)

					–40°C to +85°C			
Symbol	Pins	Parameter	Test Conditions	V _{CC} (V)	Min	Тур	Max	Unit
V _{IH}	ŌĒ	Control Input HIGH Voltage		2.7 3.3 4.2	1.4 1.7 2.3	-	-	V
V _{IL}	ŌĒ	Control Input LOW Voltage		2.7 3.3 4.2	-	-	0.5 0.5 0.8	V
I _{IN}	ŌĒ	Control Input Leakage Current	$0 \le V_{IS} \le V_{CC}$	1.65 – 4.5	-	-	±1.0	μА

SUPPLY CURRENT AND LEAKAGE (Typical: T = 25°C, V_{CC} = 3.3 V)

					-40°C to +85°C			
Symbol	Pins	Parameter	Test Conditions	V _{CC} (V)	Min	Тур	Max	Unit
I _{CC}	V _{CC}	Quiescent Supply Current	$V_{IS} = V_{CC}$ or GND; $I_D = 0$ A	1.65 – 4.5	-	-	1.0	μΑ
I _{CCT}	V _{CC}	Increase in I _{CC} per Control Voltage	V _{IN} = 2.6 V	3.6	_	-	10.0	μΑ
I _{OZ}		OFF State Leakage	$0 \le V_{IS} \le V_{CC}$	1.65 – 4.5	_	_	±1.0	μΑ
I _{OFF}	D+, D-	Power OFF Leakage Current	$0 \le V_{IS} \le V_{CC}$	0	-	-	±1.0	μΑ

ON RESISTANCE (Typical: T = 25°C, V_{CC} = 3.3 V)

					–40°C to +85°C			
Symbol	Pins	Parameter	Test Conditions	V _{CC} (V)	Min	Тур	Max	Unit
R _{ON}		On-Resistance	I_{ON} = -100 mA V_{IS} = 0 to V_{CC}	2.7 3.3 4.2	-		2.0 1.4 1.3	Ω
R _{FLAT}		On–Resistance Flatness	I_{ON} = -100 mA V_{IS} = 0 to V_{CC}	2.7 3.3 4.2	-	0.32 0.35 0.37	-	Ω
ΔR_{ON}		On–Resistance Matching	$I_{ON} = -100 \text{ mA}$ $V_{IS} = 0 \text{ to } V_{CC}$	2.7 3.3 4.2	-	0.16 0.16 0.15	-	Ω

AC ELECTRICAL CHARACTERISTICS

TIMING/FREQUENCY (Typical: T = 25°C, V_{CC} = 3.3 V, R_L = 50 Ω , C_L = 5 pF, f = 1 MHz)

					-40	-40°C to +85°C		
Symbol	Pins	Parameter	Test Conditions	V _{CC} (V)	Min	Тур	Max	Unit
t _{ON}	Closed to Open	Turn-ON Time		1.65 – 4.5	1	20	Ì	ns
t _{OFF}	Open to Closed	Turn-OFF Time		1.65 – 4.5	-	15	-	ns
BW		-3 dB Bandwidth	C _L = 5 pF	1.65 – 4.5	_	496	_	MHz

ISOLATION (Typical: T = 25°C, V_{CC} = 3.3 V, R_L = 50 Ω , C_L = 5 pF, f = 1 MHz)

					-40°C to +85°C			
Symbol	Pins	Parameter	Test Conditions	V _{CC} (V)	Min	Тур	Max	Unit
O _{IRR}	Open	OFF-Isolation		1.65 – 4.5	_	-57	-	dB
X _{TALK}	HSD+, HSD-	Non-Adjacent Channel Crosstalk		1.65 – 4.5	-	-97	1	dB

$\textbf{CAPACITANCE} \text{ (Typical: } T = 25^{\circ}\text{C, V}_{CC} = 3.3 \text{ V, R}_{L} = 50 \text{ }\Omega\text{, C}_{L} = 5 \text{ pF, f} = 1 \text{ MHz)}$

				-40°C to +85°C			
Symbol	Pins	Parameter	Test Conditions	Min	Тур	Max	Unit
C _{IN}	ŌĒ	Control Pin Input Capacitance	V _{CC} = 0 V	_	8.5	-	pF
C _{ON}	HSD+, to D+	ON Capacitance	V _{IN} = 0 V	-	32	-	pF
C _{OFF}	HSD+, HSD-	OFF Capacitance	$V_{IS} = 3.3 \text{ V}; V_{IN} = 3.3 \text{ V}$	-	19	-	pF

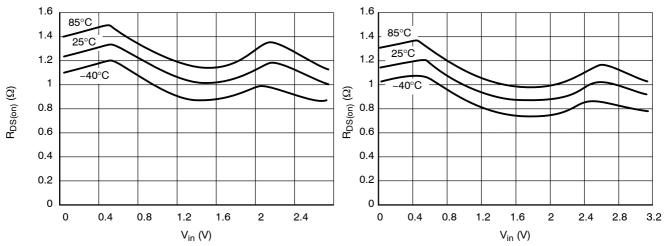


Figure 3. R_{ON} @ V_{CC} = 2.7 V

Figure 4. R_{ON} @ V_{CC} = 3.3 V

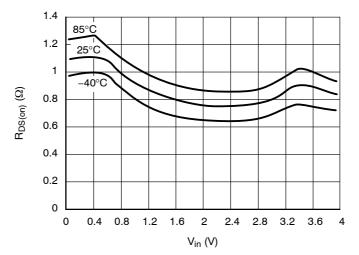


Figure 5. R_{ON} @ V_{CC} = 4.2 V

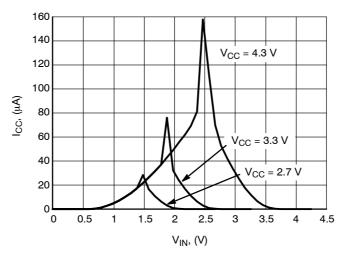
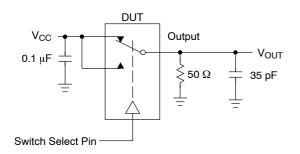



Figure 6. I_{CC} vs. V_{IN}

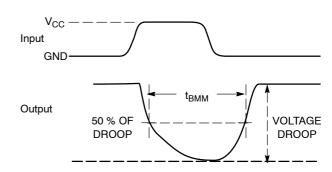
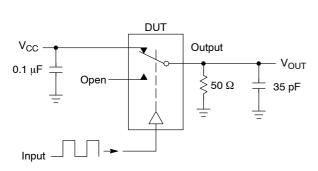



Figure 7. t_{BBM} (Time Break-Before-Make)

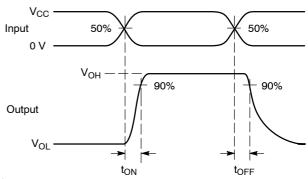


Figure 8. t_{ON}/t_{OFF}

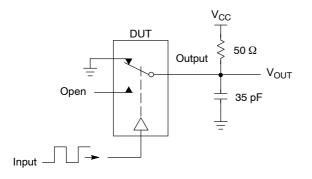
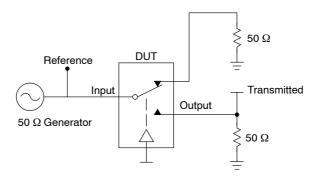



Figure 9. t_{ON}/t_{OFF}

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. V_{ISO} , Bandwidth and V_{ONL} are independent of the input signal direction.

$$V_{ISO}$$
 = Off Channel Isolation = 20 Log $\left(\frac{V_{OUT}}{V_{IN}}\right)$ for V_{IN} at 100 kHz

$$V_{ONL}$$
 = On Channel Loss = 20 Log $\left(\frac{V_{OUT}}{V_{IN}}\right)$ for V_{IN} at 100 kHz to 50 MHz

Bandwidth (BW) = the frequency 3 dB below V_{ONL}

 V_{CT} = Use V_{ISO} setup and test to all other switch analog input/outputs terminated with 50 Ω

Figure 10. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V_{ONL}

DEVICE ORDERING INFORMATION

Device	Marking	Package Type	Shipping [†]
NLAS5213AUSG	VD	US8 (Pb-Free)	3,000 / Tape & Reel
NLAS5213AMUTAG	VD	UDFN8 (Pb-Free)	3,000 / Tape & Reel
NLAS5213BUSG	VE	US8 (Pb-Free)	3,000 / Tape & Reel
NLAS5213BMUTAG	VE	UDFN8 (Pb-Free)	3,000 / Tape & Reel

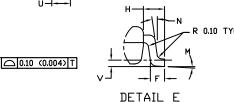
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

R R R R

В

SEATING PLANE

甶


DATE 01 SEP 2021

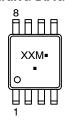
INCHES

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSION, OR GATE BURR. MOLD FLASH, PROTRUSION, OR GATE BURR SHALL NOT EXCEED 0.14 (0.0055") PER SIDE.
- DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH AND PROTRUSION SHALL NOT EXCEED 0.14 (0.0055") PER SIDE.
- LEAD FINISH IS SOLDER PLATING WITH THICKNESS OF 0.0076-0.0203 MM (0.003-0.008").
- ALL TOLERANCE UNLESS OTHERWISE SPECIFIED ±0.0508 MM (0.002").

MILLIMETERS

DETAIL E


(0.004)[T]	DETAIL E
------------	----------

8X 0.30— —
8x 0.68
3,40
1 0 0 0
0.50 PITCH
RECOMMENDED * MOUNTING FOOTPRINT

♦ 0.10 (0.004)**₩** T X Y

	TILLLINETERO		11101120		
DIM	MIN.	MAX.	MIN.	MAX.	
Α	1.90	2.10	0.075	0.083	
В	2.20	2.40	0.087	0.094	
С	0.60	0.90	0.024	0.035	
D	0.17	0.25	0.007	0.010	
F	0.20	0.35	0.008	0.014	
G	0.50 BSC		0.020	BSC	
Н	0.40 REF		0.016	6 REF	
J	0.10	0.18	0.004	0.007	
К	0.00	0.10	0.000	0.004	
L	3.00	3.25	0.118	0.128	
M	0*	6*	0*	6°	
N	0*	10*	0*	10*	
Р	0.23	0.34	0.010	0.013	
R	0.23	0.33	0.009	0.013	
2	0.37	0.47	0.015	0.019	
U	0.60	0.80	0.024	0.031	
	0.12 BSC		0.005	BSC	

GENERIC MARKING DIAGRAM*

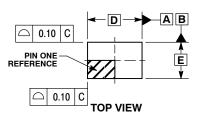
XX = Specific Device Code

Μ = Date Code

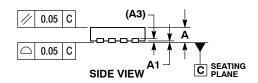
= Pb-Free Package

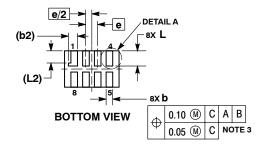
(Note: Microdot may be in either location)

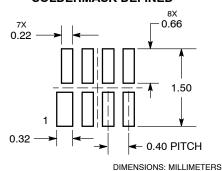
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.


DOCUMENT NUMBER:	98AON04475D	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	US8		PAGE 1 OF 1	

onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.




DATE 08 NOV 2006


SCALE 4:1

MOUNTING FOOTPRINT SOLDERMASK DEFINED

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION 6 APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM TERMINAL TIP.
- 4. MOLD FLASH ALLOWED ON TERMINALS ALONG EDGE OF PACKAGE. FLASH MAY NOT EXCEED 0.03 ONTO BOTTOM SURFACE OF TERMINALS.
- DETAIL A SHOWS OPTIONAL CONSTRUCTION FOR TERMINALS.

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.45	0.55		
A1	0.00	0.05		
A3	0.127	REF		
b	0.15 0.25			
b2	0.30 REF			
D	1.80 BSC			
E	1.20 BSC			
е	0.40 BSC			
L	0.45 0.5			
L1	0.00	0.03		
L2	0.40 REF			

GENERIC MARKING DIAGRAM*

XX = Specific Device Code

= Date Code Μ

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98AON23417D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	UDFN8 1.8X1.2, 0.4P		PAGE 1 OF 1	

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales