ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

Single 3-Input NAND Gate

NL17SZ10

The NL17SZ10 is a single 3-input NAND Gate in tiny footprint packages.

Features

- Designed for 1.65 V to 5.5 V V_{CC} Operation
- 2.4 ns t_{PD} at $V_{CC} = 5 V (Typ)$
- Inputs/Outputs Overvoltage Tolerant up to 5.5 V
- IOFF Supports Partial Power Down Protection
- Source/Sink 24 mA at 3.0 V
- Chip Complexity < 100 FETs
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

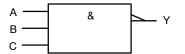
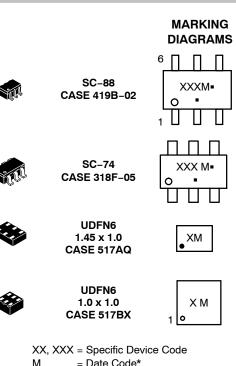
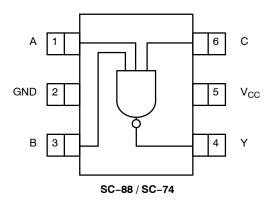



Figure 1. Logic Symbol

ON Semiconductor®

www.onsemi.com

= Date Code* = Pb-Free Package


= PD-Free Packag

(Note: Microdot may be in either location)

*Date Code orientation and/or position may vary depending upon manufacturing location.

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 6 of this data sheet.

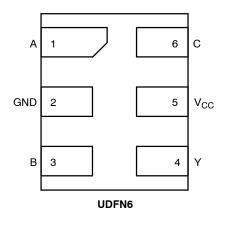


Figure 2. Pinout (Top View)

PIN ASSIGNMENT

Pin	Function
1	А
2	GND
3	В
4	Y
5	V _{CC}
6	С

FUNCTION TABLE (Y = \overline{ABC})

	Output		
Α	В	С	Y
Х	Х	L	Н
Х	L	Х	Н
L	Х	Х	Н
Н	Н	Н	L

H = HIGH Logic Level L = LOW Logic Level X = Either LOW or HIGH Logic Level

MAXIMUM RATINGS

Symbol	Characteristics		Value	Unit
V _{CC}	DC Supply Voltage		–0.5 to +6.5	V
V _{IN}	DC Input Voltage		–0.5 to +6.5	V
V _{OUT}		ctive-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode (V _{CC} = 0 V)	-0.5 to V _{CC} + 0.5 -0.5 to +6.5 -0.5 to +6.5	V
I _{IK}	DC Input Diode Current	V _{IN} < GND	-50	mA
I _{OK}	DC Output Diode Current	V _{OUT} < GND	-50	mA
I _{OUT}	DC Output Source/Sink Current		±50	mA
I _{CC} or I _{GND}	DC Supply Current per Supply Pin or Ground Pin	±100	mA	
T _{STG}	Storage Temperature Range		-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case for 10 secs		260	°C
TJ	Junction Temperature Under Bias		+150	°C
θ_{JA}	Thermal Resistance (Note 2)	SC-88 SC-74 UDFN6	377 320 154	°C/W
PD	Power Dissipation in Still Air	SC-88 SC-74 UDFN6	332 390 812	mW
MSL	Moisture Sensitivity		Level 1	-
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	-
V_{ESD}	ESD Withstand Voltage (Note 3)	Human Body Model Charged Device Model	2000 1000	V
I _{Latchup}	Latchup Performance (Note 4)		±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Applicable to devices with outputs that may be tri-stated.

 Measured with minimum pad spacing on an FR4 board, using 10mm-by-1inch, 2 ounce copper trace no air flow per JESD51-7.
 HBM tested to ANSI/ESDA/JEDEC JS-001-2017. CDM tested to EIA/JESD22-C101-F. JEDEC recommends that ESD qualification to EIA/JESD22-A115-A (Machine Model) be discontinued per JEDEC/JEP172A.

4. Tested to EIA/JESD78 Class II.

RECOMMENDED OPERATING CONDITIONS

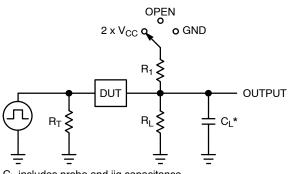
Symbol	Characteristics	Min	Max	Unit
V _{CC}	Positive DC Supply Voltage	1.65	5.5	V
V _{IN}	DC Input Voltage	0	5.5	V
V _{OUT}	DC Output Voltage Active-Mode (High or Low Sta Tri-State Mode (Note Power-Down Mode (V _{CC} = 0	e 1) 0	V _{CC} 5.5 5.5	
T _A	Operating Temperature Range	-55	+125	°C
t _r , t _f	Input Rise and Fall Time $\begin{array}{c} V_{CC} = 1.65 \ V \ to \ 1.9 \\ V_{CC} = 2.3 \ V \ to \ 2. \\ V_{CC} = 3.0 \ V \ to \ 3. \\ V_{CC} = 4.5 \ V \ to \ 5. \end{array}$	7 V 0	20 20 10 5	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

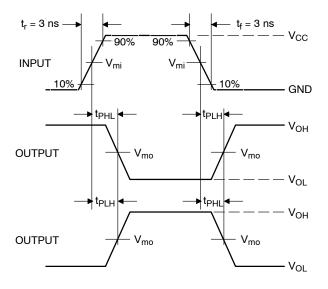
			Vcc	Т	م = 25°0	2	–55°C ≤ T	A ≤ 125°C	
Symbol	Parameter	Condition	(V)	Min	Тур	Max	Min	Max	Units
VIH	High-Level Input		1.65 to 1.95	0.65 V _{CC}	-	_	0.65 V _{CC}	-	V
	Voltage		2.3 to 5.5	0.70 V _{CC}	-	_	0.70 V _{CC}	-	
VIL	Low-Level Input		1.65 to 1.95	-	-	0.35 V _{CC}	-	0.35 V _{CC}	V
	Voltage		2.3 to 5.5	-	-	0.30 V _{CC}	-	0.30 V _{CC}	
V _{OH}	High-Level Output Voltage		1.65 to 5.5 1.65 2.3 3.0 3.0 4.5	V _{CC} - 0.1 1.29 1.9 2.4 2.3 3.8	V _{CC} 1.4 2.1 2.7 2.5 4.0	- - - - -	V _{CC} - 0.1 1.29 1.9 2.4 2.3 3.8	- - - - -	V
V _{OL}	Low-Level Output Voltage		1.65 to 5.5 1.65 2.3 3.0 3.0 4.5		- 0.08 0.2 0.28 0.38 0.42	0.1 0.24 0.3 0.4 0.55 0.55		0.1 0.24 0.3 0.4 0.55 0.55	V
I _{IN}	Input Leakage Current	V_{IN} = 5.5 V or GND	1.65 to 5.5	-	-	±0.1	-	±1.0	μA
I _{OFF}	Power Off Leakage Current	V _{IN} = 5.5 V or V _{OUT} = 5.5 V	0	-	-	1.0	-	10	μΑ
I _{CC}	Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5	_	-	1.0	_	10	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


AC ELECTRICAL CHARACTERISTICS

			V _{CC} T _A = 25°C		С	–55°C ≤ T			
Symbol	Parameter	Condition	(V)	Min	Тур	Max	Min	Max	Units
t _{PLH,} Propagation Delay,	R_L = 1 M Ω , C_L = 15 pF	1.65 to 1.95	-	7.0	17.5	-	18.0	ns	
tPHL	(A or B or C) to Y (Figures 3 and 4)	R_L = 1 M Ω , C_L = 15 pF	2.3 to 2.7	-	3.0	10.5	-	11.0	
		R_L = 1 M Ω , C_L = 15 pF	3.0 to 3.6	-	2.4	7.5	-	8.0	
		$R_L = 500 \ \Omega$, $C_L = 50 \ pF$		-	2.9	8.5	-	9.0	
		R_L = 1 M Ω , C_L = 15 pF	4.5 to 5.5	-	2.0	5.5	-	6.0	
		$R_L = 500 \ \Omega$, $C_L = 50 \ pF$		-	2.4	7.5	-	8.0	

CAPACITIVE CHARACTERISTICS


Symbol	Parameter	Condition	Typical	Units
C _{IN}	Input Capacitance	V_{CC} = 5.5 V, V_{IN} = 0 V or V_{CC}	2.5	pF
C _{OUT}	Output Capacitance	V_{CC} = 5.5 V, V_{IN} = 0 V or V_{CC}	2.5	pF
C _{PD}	Power Dissipation Capacitance (Note 5)	10 MHz, V _{CC} = 3.3 V, V _{IN} = 0 V or V _{CC} 10 MHz, V _{CC} = 5.5 V, V _{IN} = 0 V or V _{CC}	9 11	pF

5. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no-load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

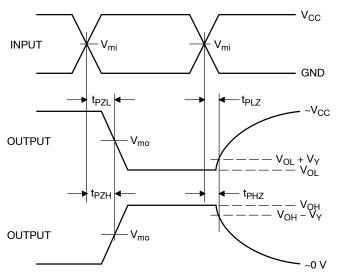
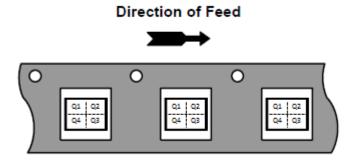

 $\begin{array}{l} C_L \text{ includes probe and jig capacitance} \\ R_T \text{ is } Z_{OUT} \text{ of pulse generator (typically 50 } \Omega) \\ f = 1 \mbox{ MHz} \end{array}$

Figure 3. Test Circuit

Test	Switch Position	C _L , pF	R_{L}, Ω	R ₁ , Ω		
t _{PLH} / t _{PHL}	Open	See AC Characteristics Table				
t _{PLZ} / t _{PZL}	$2 \times V_{CC}$	50	500	500		
t _{PHZ} / t _{PZH}	GND	50	500	500		
	-					

X = Don't Care

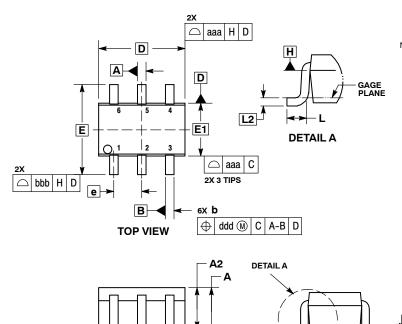
Figure 4. Switching Waveforms


		Vm		
V _{CC} , V	V _{mi} , V	t _{PLH} , t _{PHL}	t _{PZL} , t _{PLZ} , t _{PZH} , t _{PHZ}	V _Y , V
1.65 to 1.95	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.15
2.3 to 2.7	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.15
3.0 to 3.6	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.3
4.5 to 5.5	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.3

DEVICE ORDERING INFORMATION

Device	Packages	Specific Device Code	Pin 1 Orientation (See below)	Shipping [†]
NL17SZ10DFT2G (In Development)	SC-88	TBD	Q4	3000 / Tape & Reel
NL17SZ10DBVT1G	SC-74	AQ	Q4	3000 / Tape & Reel
NL17SZ10MU1TCG (In Development)	UDFN6, 1.45 x 1.0, 0.5P	TBD	Q4	3000 / Tape & Reel
NL17SZ10MU3TCG (In Development)	UDFN6, 1.0 x 1.0, 0.35P	TBD	Q4	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


Pin 1 Orientation in Tape and Reel

NL17SZ10

PACKAGE DIMENSIONS

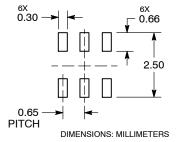
SC-88/SC70-6/SOT-363 CASE 419B-02 **ISSUE Y**

NOTES:

С

END VIEW

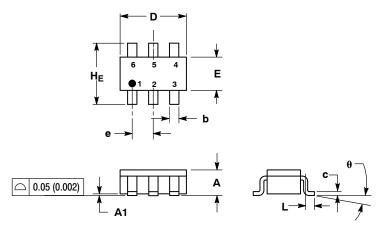
- NOTES:
 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRU-SIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END.
 DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H.
 DATUMS A AND B ARE DETERMINED AT DATUM H.
 DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP.
 DIMENSION D ODES NOT INCLUDE DAMBAR PROTRUSION
- LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION & AT MAXIMUM MATERIAL CONDI-TION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER DADI IS OF THE FOOT 7. RADIUS OF THE FOOT.


	MILLIMETERS			INCHES				
DIM	MIN	NOM	MAX	MIN	NOM	MAX		
Α			1.10			0.043		
A1	0.00		0.10	0.000		0.004		
A2	0.70	0.90	1.00	0.027	0.035	0.039		
b	0.15	0.20	0.25	0.006	0.008	0.010		
С	0.08	0.15	0.22	0.003	0.006	0.009		
D	1.80	2.00	2.20	0.070	0.078	0.086		
Е	2.00	2.10	2.20	0.078	0.082	0.086		
E1	1.15	1.25	1.35	0.045	0.049	0.053		
е		0.65 BS	С	0.026 BSC				
L	0.26	0.36	0.46	0.010	0.014	0.018		
L2		0.15 BS	SC	0.006 BSC				
aaa	0.15				0.006			
bbb	0.30			0.012				
CCC	0.10			0.004				
ddd		0.10			0.004			

RECOMMENDED **SOLDERING FOOTPRINT***

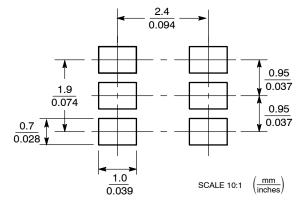
SIDE VIEW

A1


ex □ ccc C

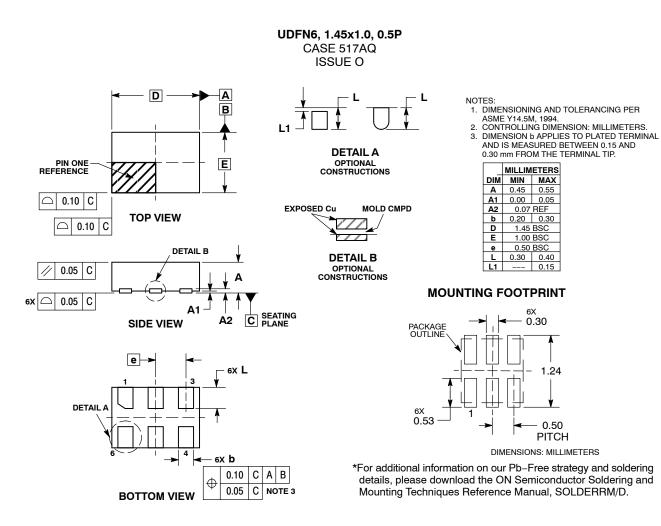
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

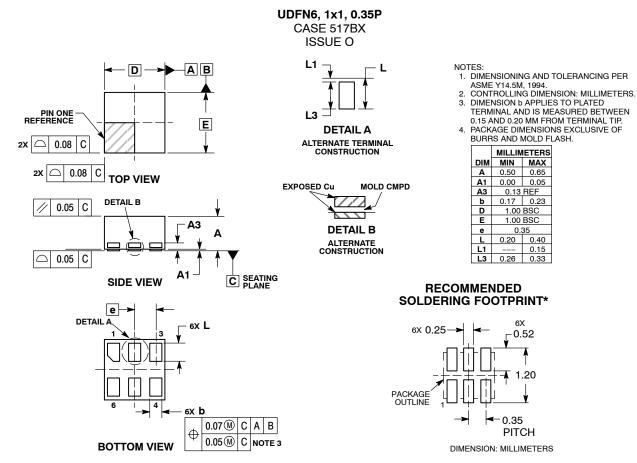

SC-74 CASE 318F-05 **ISSUE N**

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. 4. 318F-01, -02, -03, -04 OBSOLETE. NEW STANDARD 318F-05.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.90	1.00	1.10	0.035	0.039	0.043
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.25	0.37	0.50	0.010	0.015	0.020
С	0.10	0.18	0.26	0.004	0.007	0.010
D	2.90	3.00	3.10	0.114	0.118	0.122
E	1.30	1.50	1.70	0.051	0.059	0.067
е	0.985	0.95	1105	0.084	0.037	0.10441
L	0.20	0.40	0.60	0.008	0.016	0.024
HE	2.50	2.75	3.00	0.099	0.108	0.118
θ		-			-	


SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


NL17SZ10

PACKAGE DIMENSIONS

NL17SZ10

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has using and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended o

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative