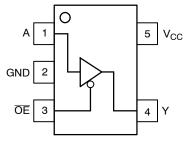
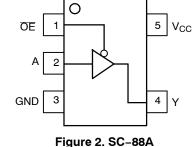
MARKING

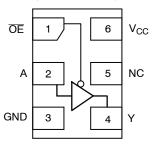
onsemi


Bus Buffer with 3-State Output NL17SG125


The NL17SG125 MiniGate[™] is an advanced high-speed CMOS Bus Buffer with 3-State Output in ultra-small footprint.

The NL17SG125 input structures provides protection when voltages up to 3.6 V are applied.

Features


- Wide Operating V_{CC} Range: 0.9 V to 3.6 V
- High Speed: $t_{PD} = 2.4$ ns (Typ) at $V_{CC} = 3.0$ V, $C_L = 15$ pF
- Low Power Dissipation: $I_{CC} = 0.5 \ \mu A$ (Max) at $T_A = 25^{\circ}C$
- 3.6 V Overvoltage Tolerant (OVT) Input Pins
- IOFF Supports Partial Power Down Protection
- Ultra-Small Packages
- -Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

(Top View)

Figure 1. SOT-953 (Top Thru View)

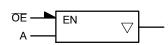
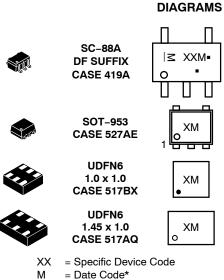



Figure 4. Logic Symbol

Figure 3. UDFN6 (Top View)

PIN ASSIGNMENT

Pin Number	SOT-953	SC-88A	UDFN6
1	А	ŌĒ	ŌĒ
2	GND	А	А
3	ŌĒ	GND	GND
4	Y	Y	Y
5	V _{CC}	V _{CC}	NC
6			V _{CC}

= Pb-Free Package

(Note: Microdot may be in either location) *Date Code orientation and/or position may vary depending upon manufacturing location.

FUNCTION TABLE

A Input	OE Input	Y Output
L	L	L
Н	L	Н
Х	н	Z

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

Table 1. MAXIMUM RATINGS

Symbol	Paran	neter	Value	Unit	
V _{CC}	DC Supply Voltage		-0.5 to +4.3	V	
V _{IN}	DC Input Voltage		-0.5 to +4.3	V	
V _{OUT}	DC Output Voltage	Active–Mode (High or Low State) Tri–State Mode (Note 1) Power–Down Mode (V _{CC} = 0 V)	$\begin{array}{c} -0.5 \text{ to } V_{CC} + 0.5 \\ -0.5 \text{ to } +4.3 \\ -0.5 \text{ to } +4.3 \end{array}$	V	
I _{IK}	DC Input Diode Current	V _{IN} < GND	-20	mA	
I _{OK}	DC Output Diode Current	V _{OUT} < GND	-20	mA	
I _{OUT}	DC Output Source/Sink Current		±20	mA	
I _{CC or} I _{GND}	DC Supply Current Per Supply Pin or Gro	bund Pin	±20	mA	
T _{STG}	Storage Temperature Range		–65 to +150	°C	
ΤL	Lead Temperature, 1 mm from Case for 1	260	°C		
TJ	Junction Temperature Under Bias		+150	°C	
θ_{JA}	Thermal Resistance (Note 2)	SC-88A SOT-953 UDFN6	377 254 154	°C/M	
P _D	Power Dissipation in Still Air at 85°C	SC-88A SOT-953 UDFN6	332 491 812	mW	
MSL	Moisture Sensitivity		Level 1		
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in		
V_{ESD}	ESD Withstand Voltage (Note 3)	Human Body Model Charged Device Model	2000 1000	V	
ILATCHUP	Latchup Performance (Note 4)		±100	mA	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

 Applicable to devices with outputs that may be tri-stated.
 Measured with minimum pad spacing on an FR4 board, using 10 mm – by – 1inch, 2 ounce copper trace no air flow per JESD51–7.
 HBM tested to EIA / JESD22–A114–A. CDM tested to JESD22–C101–A. JEDEC recommends that ESD qualification to EIA/JESD22–A115A (Machine Model) be discontinued. 4. Tested to EIA/JESD78 Class II.

Table 2. RECOMMENDED OPERATING CONDITIONS

Symbol	Pai	rameter	Min	Max	Unit
V _{CC}	Positive DC Supply Voltage		0.9	3.6	V
V _{IN}	Digital Input Voltage		0	3.6	V
V _{OUT}	Output Voltage	Active Mode (High or Low State) Tri-State Mode (Note 1) Power Down Mode (V _{CC} = 0 V)	0 0 0	V _{CC} 3.6 3.6	V
T _A	Operating Free-Air Temperature		-55	+125	°C
t _r , t _f	Input Transition Rise or Fall Rate	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	0	10	nS/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 3. DC ELECTRICAL CHARACTERISTICS

				T _A = 25°C			T _A = −55°C to +125°C			
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit	
VIH	High-Level Input		0.9	-	V _{CC}	-	-	-	V	
	Voltage		1.1 to 1.3	$0.7 \times V_{CC}$	-	-	$0.7 \times V_{CC}$	-		
			1.4 to 1.6	0.65 x V _{CC}	-	-	0.65 x V _{CC}	-		
			1.65 to 1.95	$0.65 \times V_{CC}$	-	-	$0.65 \times V_{CC}$	-		
			2.3 to 2.7	1.7	-	-	1.7	-		
			3.0 to 3.6	2.0	-	-	2.0	-		
V _{IL}	Low-Level Input		0.9	-	GND	-	-	-	V	
	Voltage		1.1 to 1.3	-	-	0.3 x V _{CC}	-	0.3 x V _{CC}		
			1.4 to 1.6	-	-	0.35 x V _{CC}	-	$0.35 \times V_{CC}$		
			1.65 to 1.95	-	-	0.35 x V _{CC}	-	$0.35 \times V_{CC}$		
			2.3 to 2.7	-	-	0.7	-	0.7		
			3.0 to 3.6	-	-	0.8	-	0.8		
V _{OH} High-Level Output Voltage	V _{IN} = V _{IH} or V _{IL}							V		
	I _{OH} = -20 μA	0.9	-	0.75	-	-	-			
		I _{OH} = -0.3 mA	1.1 to 1.3	$0.75 \times V_{CC}$	-	-	$0.75 \times V_{CC}$	-		
		I _{OH} = -1.7 mA	1.4 to 1.6	$0.75 \times V_{CC}$	-	-	$0.75 \times V_{CC}$	-		
		I _{OH} = -3.0 mA	1.65 to 1.95	$V_{CC}-0.45$	-	-	$V_{CC}-0.45$	-		
		I _{OH} = -4.0 mA	2.3 to 2.7	2.0	-	-	2.0	-	1	
		I _{OH} = -8.0 mA	3.0 to 3.6	2.48	-	-	2.48	-		
V _{OL}	Low-Level Output	V _{IN} = V _{IH} or V _{IL}							V	
	Voltage	I _{OL} = 20 μA	0.9	-	0.1	-	-	-		
		I _{OL} = 0.3 mA	1.1 to 1.3	-	-	0.25 x V _{CC}	-	$0.25 \times V_{CC}$		
		I _{OL} = 1.7 mA	1.4 to 1.6	-	-	0.25 x V _{CC}	-	$0.25 \times V_{CC}$		
		I _{OL} = 3.0 mA	1.65 to 1.95	-	-	0.45	-	0.45		
		I _{OL} = 4.0 mA	2.3 to 2.7	-	-	0.4	-	0.4		
		I _{OL} = 8.0 mA	2.7 to 3.6	-	-	0.4	-	0.4		
I _{IN}	Input Leakage Current	$V_{IN} = 0 V \text{ to } 3.6 V$	0.9 to 3.6	-	-	±0.1	-	±1.0	μΑ	
I _{OFF}	Power Off Leakage Current	V _{IN} = 0 V to 3.6 V; V _{OUT} = 0 V to 3.6 V	0	-	-	1.0	-	10.0	μΑ	
I _{CC}	Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	0.9 to 3.6	-	-	1.0	-	10.0	μΑ	
I _{OZ}	3–State Output Leakage Current	V _{IN} = V _{IH} or V _{IL} V _{OUT} = 0 to 3.6V	0.9 to 3.6	_	-	1.0	_	10.0	μΑ	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 4. AC ELECTRICAL CHARACTERISTICS

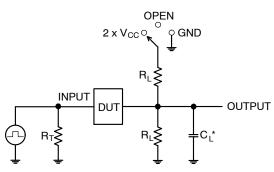
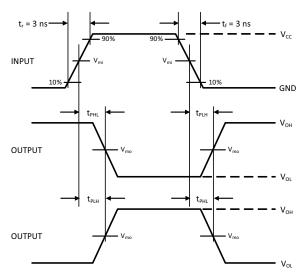
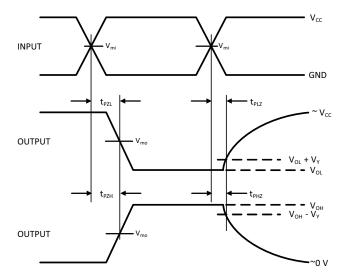

					T _A = 25 °C	2	T⊿ -55°C to	. = o +125°C		
Symbol	Parameter	Test Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit	
t _{PLH} ,	Propagation Delay,	C _L = 10 pF,	0.9	-	44.4	-	-	-	ns	
tPHL A to Y	$R_L = 1 M\Omega$	1.1 to 1.3	-	10.8	29.2	-	33.9			
			1.4 to 1.6	-	5.0	8.5	-	10.0		
			1.65 to 1.95	-	4.0	6.2	-	6.7		
			2.3 to 2.7	-	2.6	3.9	-	4.4		
			3.0 to 3.6	-	2.1	3.1	-	3.7		
		C _L = 15 pF,	0.9	-	44.9	-	-	-	ns	
		$R_L = 1 M\Omega$	1.1 to 1.3	-	11.0	29.9	-	34.7		
			1.4 to 1.6	-	5.6	9.3	-	11.2		
			1.65 to 1.95	-	4.5	6.9	-	7.1		
			2.3 to 2.7	-	2.9	4.4	-	5.0		
			3.0 to 3.6	-	2.4	3.4	-	3.9		
		C _L = 30 pF,	0.9	-	46.2	-	-	-	ns	
	$R_L = 1 M\Omega$	1.1 to 1.3	-	11.6	32.0	-	37.1			
				1.4 to 1.6	-	8.2	13.1	-	15.9	
		1.65 to 1.95	-	6	9.2	-	9.6			
		2.3 to 2.7	-	4	5.7	-	6.1			
		3.0 to 3.6	-	3.3	4.4	-	4.8			
t _{PZH} ,	Output Enable Time,	C _L = 10 pF;							ns	
t _{PZL}	OE to Y	$R_L = 100 \ k\Omega$	0.9	-	43.3	-	-	-		
		$R_L = 5 \ k\Omega$	1.1 to 1.3	-	10.5	29.0	-	33.7		
		$R_L = 5 \ k\Omega$	1.4 to 1.6	-	5.3	7.8	-	8.3		
		$R_L = 5 \ k\Omega$	1.65 to 1.95	-	3.9	5.5	-	5.9		
		$R_L = 5 \ k\Omega$	2.3 to 2.7	-	2.5	3.5	-	3.8		
		$R_L = 5 \ k\Omega$	3.0 to 3.6	-	2.1	2.7	-	3		
		C _L = 15 pF;							ns	
		R_L = 100 k Ω	0.9	-	43.8	-	-	-		
		$R_L = 5 \ k\Omega$	1.1 to 1.3	-	10.7	29.7	-	34.5		
		$R_L = 5 \ k\Omega$	1.4 to 1.6	-	5.9	8.9	-	11		
		$R_L = 5 \ k\Omega$	1.65 to 1.95	-	4.4	6.3	-	6.5		
		$R_L = 5 \ k\Omega$	2.3 to 2.7	-	2.9	3.9	-	4.2		
		$R_L = 5 \ k\Omega$	3.0 to 3.6	-	2.3	3	-	3.3		
		C _L = 30 pF;							ns	
		R_L = 100 k Ω	0.9	-	45.1	-	-	-	1	
		$R_L = 5 \ k\Omega$	1.1 to 1.3	-	11.2	31.8	-	36.9	1	
		$R_L = 5 k\Omega$	1.4 to 1.6	-	8.3	12.2	-	13.7	1	
		$R_L = 5 k\Omega$	1.65 to 1.95	-	6.1	8.6	-	9.7	1	
		$R_L = 5 k\Omega$	2.3 to 2.7	-	3.8	5	-	5.5	1	
		$R_L = 5 k\Omega$	3.0 to 3.6	-	2.9	3.8	-	4.2		

Table 4. AC ELECTRICAL CHARACTERISTICS

				T _A = 25 °C				∖ = o +125°C	
Symbol	Parameter	Test Condition	V _{CC} (V)	Min	Тур	Мах	Min	Max	Unit
t _{PHZ} ,	Output Disable Time, OE to Y	C _L = 10 pF;							ns
t _{PLZ}	UE to Y	R_L = 100 k Ω	0.9	-	89.6	-	-	-	1
		$R_L = 5 \ k\Omega$	1.1 to 1.3	-	9.1	16.5	-	22.4	1
		$R_L = 5 \ k\Omega$	1.4 to 1.6	-	7.1	9.1	-	10.4	1
		$R_L = 5 \ k\Omega$	1.65 to 1.95	-	6.5	8.3	-	9	1
		$R_L = 5 \ k\Omega$	2.3 to 2.7	-	5.8	7.3	-	8.8	1
		$R_L = 5 \ k\Omega$	3.0 to 3.6	-	5.4	10.1	-	10.3	1
		C _L = 15 pF;							ns
		R_L = 100 k Ω	0.9	-	117.8	-	-	-	1
	$R_L = 5 \ k\Omega$	1.1 to 1.3	-	9.8	18.4	-	25.1	1	
		$R_L = 5 \ k\Omega$	1.4 to 1.6	-	7.8	9.8	-	11.3	
		$R_L = 5 \ k\Omega$	1.65 to 1.95	-	7.2	9.2	-	10.6	
		$R_L = 5 \ k\Omega$	2.3 to 2.7	-	7	8.2	-	10.3	
		$R_L = 5 \ k\Omega$	3.0 to 3.6	-	6.6	11.1	-	11.3	1
		C _L = 30 pF;							ns
		$R_L = 100 \text{ k}\Omega$	0.9	-	202.1	-	-	-	
		$R_L = 5 \ k\Omega$	1.1 to 1.3	-	13.2	24.3	-	31.9	
		$R_L = 5 \ k\Omega$	1.4 to 1.6	-	12.2	13.5	-	14.9	
		$R_L = 5 \ k\Omega$	1.65 to 1.95	-	11.4	12.7	-	13.9	
		$R_L = 5 \ k\Omega$	2.3 to 2.7	-	11.3	12.2	-	13.5	
		$R_L = 5 \ k\Omega$	3.0 to 3.6	-	10.2	14.8	-	15.1	1
C _{IN}	Input Capacitance		0 to 3.6		3	-	-	-	pF
CO	Output Capacitance	V _O = GND	0		3	-	-	-	pF
C _{PD}	Power Dissipation Capacitance (Note 5)	f = 10 MHz	0.9 to 3.6	-	4	-	-	-	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product


performance may not be indicated by the Electrical Characteristics for the fisted test conditions, unless otherwise holder. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no-load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

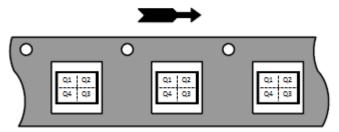


Test	Switch Position
t _{PLH} / t _{PHL}	Open
t _{PLZ} / t _{PZL}	2 x V _{CC}
t _{PHZ} / t _{PZH}	GND

Figure 5. Test Circuit

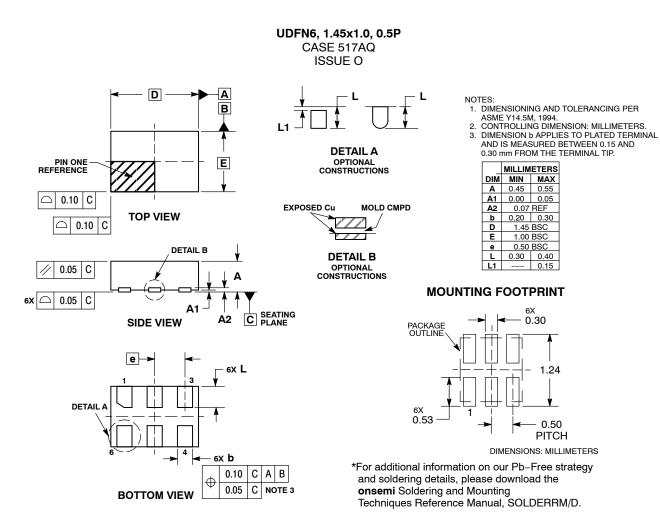
Figure 6. Switching Waveforms

V _{CC} , V	V _{mi} , V	V _{mo} , V	V _Y , V
0.9	V _{CC} /2	V _{CC} /2	0.1
1.1 to 1.3	V _{CC} /2	V _{CC} /2	0.1
1.4 to 1.6	V _{CC} /2	V _{CC} /2	0.1
1.65 to 1.95	V _{CC} /2	V _{CC} /2	0.15
2.3 to 2.7	V _{CC} /2	V _{CC} /2	0.15
3.0 to 3.6	1.5	1.5	0.3

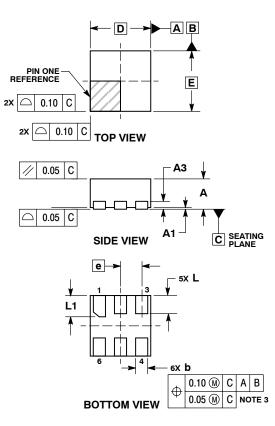

ORDERING INFORMATION

Device	Marking	Pin 1 Orientation (See below)	Package	Shipping [†]
NL17SG125DFT2G	A4	Q4	SC-88A	3000 / Tape & Reel
NL17SG125P5T5G	F (Rotated 90°CW)	Q2	SOT-953	8000 / Tape & Reel
NL17SG125MU1TCG (Contact onsemi)	TBD	Q4	UDFN6 1.45 x 1 mm	3000 / Tape & Reel
NL17SG125MU3TCG (Contact onsemi)	TBD	Q4	UDFN6 1 x 1 mm	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

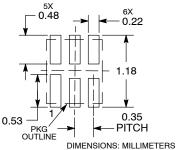

*-Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

PIN 1 ORIENTATION IN TAPE AND REEL Direction of Feed


MiniGate is trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS


UDFN6, 1x1, 0.35P CASE 517BX ISSUE O

- NOTES:
 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL TIP.
 PACKAGE DIMENSIONS EXCLUSIVE OF BURRS AND MOLD FLASH.

BURRS AND MOLD FL						
	MILLIMETERS					
DIM	MIN	MAX				
Α	0.45	0.55				
A1	0.00	0.05				
A3	0.13	REF				
b	0.12	0.22				
D	1.00	BSC				
Е	1.00	BSC				
е	0.35 BSC					
L	0.25	0.35				
L1	0.30	0.40				

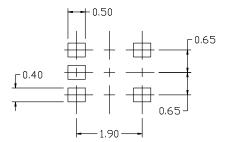
RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

onsemi

0

DATE 11 APR 2023


SC-88A (SC-70-5/SOT-353) CASE 419A-02 ISSUE M

NDTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. 419A-01 DBSDLETE. NEW STANDARD 419A-02
- 4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.1016MM PER SIDE.

e

E1

RECOMMENDED MOUNTING FOOTPRINT

 For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

DIM	MILLIMETERS			
	MIN.	NDM.	MAX,	
А	0.80	0.95	1.10	
A1			0.10	
AЗ	0.20 REF			
b	0.10	0.20	0.30	
C	0.10		0.25	
D	1.80	2.00	2.20	
E	2.00	2.10	2.20	
E1	1.15	1.25	1.35	
e	0.65 BSC			
L	0.10	0.15	0.30	

GENERIC MARKING

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

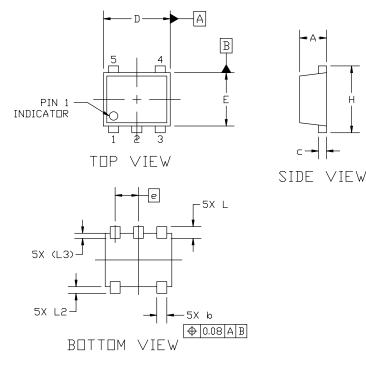
XXX = Specific Device Code

M = Date Code = Pb-Free Package

(Note: Microdot may be in either location)

DESCRIPTION:	SC-88A (SC-70-	5/SOT-353)			PAGE 1 OF 1
DOCUMENT NUMBER:	98ASB42984B			t when accessed directly from /hen stamped "CONTROLLED	
4. COLLECTOR 5. COLLECTOR STYLE 6: PIN 1. EMITTER 2 2. BASE 2 3. EMITTER 1 4. COLLECTOR 5. COLLECTOR 2/BASE	4. COLLECTOR 5. CATHODE STYLE 7: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR	4. CATHODE 2 5. CATHODE 1 STYLE 8: PIN 1. CATHODE 2. COLLECTOR 3. N/C 4. BASE 5. EMITTER	4. GATE 1 5. GATE 2 STYLE 9: PIN 1. ANODE 2. CATHODE 3. ANODE 4. ANODE 5. ANODE	4. CATHODE 3 5. CATHODE 4 Note: Please refer to style callout. If style t out in the datasheet p datasheet pinout or p	ype is not called refer to the device
STYLE 1: PIN 1. BASE 2. EMITTER 3. BASE	STYLE 2: PIN 1. ANODE 2. EMITTER 3. BASE	STYLE 3: PIN 1. ANODE 1 2. N/C 3. ANODE 2	STYLE 4: PIN 1. SOURCE 1 2. DRAIN 1/2 3. SOURCE 1	STYLE 5: PIN 1. CATHODE 2. COMMON ANOE 3. CATHODE 2	DE

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights or the rights of others.



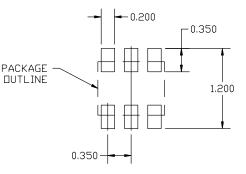
SOT-953 1.00x0.80x0.37, 0.35P CASE 527AE ISSUE F

DATE 17 JAN 2024

NDTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
- 2. CONTROLLING DIMENSION: MILLIMETERS.
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS DF THE BASE MATERIAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

GENERIC MARKING DIAGRAM*


- X = Specific Device Code M = Month Code
- *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON26457D Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-953 1.00x0.80x0.37, 0.35P		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product rights nor ther rights of others.

DIM	MIN	NDM	MAX	
А	0.34	0.37	0,40	
b	0.10	0.15	0,20	
С	0.07	0.12	0.17	
D	0,95	1.00	1.05	
E	0.75	0.80	0.85	
e	0.35 BSC			
Н	0,95	1.00	1.05	
L	0.125	0.175	0,225	
L2	0.05	0.10	0,15	
L3	0.075 (REF)			

MILLIMETERS

RECOMMENDED MOUNTING FOOTPRINT

*For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales