

Surface Mount Ultra Fast Power Rectifier

POWERMITE[®] Power Surface Mount Package

NHPM120, NRVHPM120

This ultrafast POWERMITE provides soft recovery fast switching performance in a compact thermally efficient package. The advanced packaging techniques provide for a very efficient micro-miniature space-saving surface mount rectifier. With its unique heatsink design, the POWERMITE offers thermal performance similar to the SMA while being 50% smaller in footprint area.

Features

- Fast Soft Switching for Reduced EMI and Higher Efficiency
- Low Profile Maximum Height of 1.1 mm
- Small Footprint Footprint Area of 8.45 mm²
- Supplied in 12 mm Tape and Reel
- Low Thermal Resistance with Direct Thermal Path of Die on Exposed Cathode Heat Sink
- NRV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

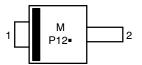
Mechanical Characteristics:

- POWERMITE is JEDEC Registered as D0-216AA
- Case: Molded Epoxy
- Epoxy Meets UL 94 V-0 @ 0.125 in
- Weight: 16.3 mg (Approximately)
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Maximum for 10 Seconds

1

• MSL 1

Applications


- Automotive LED Lighting
- Engine Control
- Freewheeling Diode Where Space is at a Premium
- Flat Panel Display

ULTRAFAST RECTIFIER 1.0 AMPERE, 200 VOLTS

POWERMITE CASE 457

MARKING DIAGRAM

M = Date Code P12 = Device Code = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]	
NRVHPM120T3G	POWERMITE (Pb-Free)	12,000 / Tape & Reel	

DISCONTINUED (Note 1)

NHPM120T3G	POWERMITE	12,000 /	
	(Pb-Free)	Tape & Reel	

- †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.
- DISCONTINUED: These devices are not recommended for new design. Please contact your onsemi representative for information. The most current information on these devices may be available on www.onsemi.com.

NHPM120, NRVHPM120

MAXIMUM RATINGS

Symbol	Rating	Value	Unit
V _{RRM} V _{RWM} V _R	Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	200	V
lo	Average Rectified Forward Current (T _L = 165°C)	1.0	Α
I _{FRM}	Peak Repetitive Forward Current (Rated V_R , Square Wave, 20 kHz) T_L = 165°C	2.0	Α
I _{FSM}	Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	30	Α
T _{stg} , T _J	Storage and Operating Junction Temperature Range (Note 2)	-65 to +175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Characteristic	Value	Unit
$\Psi_{\sf JCL}$	Thermal Resistance, Junction-to-Lead (Note 3)	12	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction-to-Ambient (Note 3)	75	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 4)	260	°C/W

ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Value	Unit
V _F	Maximum Instantaneous Forward Voltage (Note 5) $ \begin{array}{l} (I_F=1.0 \text{ A, } T_J=25^{\circ}\text{C}) \\ (I_F=2.0 \text{ A, } T_J=25^{\circ}\text{C}) \\ (I_F=1.0 \text{ A, } T_J=125^{\circ}\text{C}) \\ (I_F=2.0 \text{ A, } T_J=125^{\circ}\text{C}) \end{array} $	1.0 1.1 0.85 0.95	V
I _R	Maximum Instantaneous Reverse Current (Note 5) (Rated dc Voltage, T _J = 25°C) (Rated dc Voltage, T _J = 125°C)	0.5 25	μΑ
t _{rr}	Reverse Recovery Time $I_F = 1.0 \text{ A}, V_R = 30 \text{ V}, \text{ dI/dt} = 50 \text{ A/}\mu\text{s}, T_J = 25^{\circ}\text{C}$	25	ns
t _{rr}	Reverse Recovery Time $I_F = 1.0 \text{ A}, V_R = 30 \text{ V}, \text{ dI/dt} = 50 \text{ A/}\mu\text{s}, T_J = 50^{\circ}\text{C}$	50	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- Mounted with 700 mm² copper pad size (Approximately 1 in²) 1 oz FR4 Board.
 Mounted with pad size approximately 20 mm² copper, 1 oz FR4 Board.
 Pulse Test: Pulse Width ≤ 380 μs, Duty Cycle ≤ 2.0%.

^{2.} The heat generated must be less than the thermal conductivity from Junction-to-Ambient: $dP_D/dT_J < 1/R_{\theta JA}$.

NHPM120, NRVHPM120

TYPICAL CHARACTERISTICS

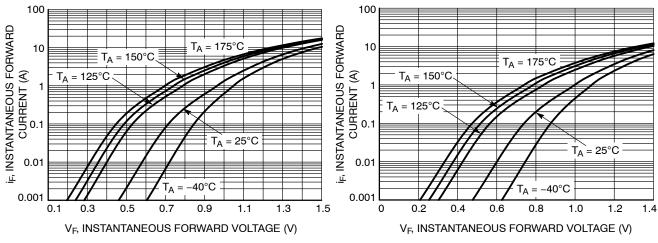


Figure 1. Typical Instantaneous Forward Characteristics

Figure 2. Maximum Instantaneous Forward Characteristics

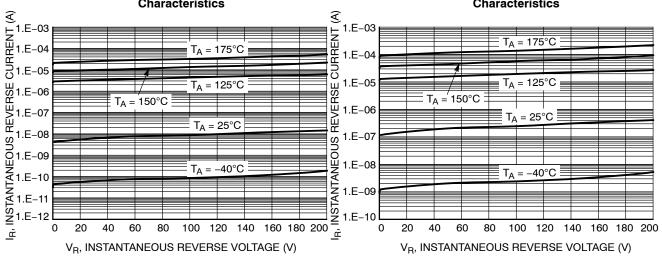


Figure 3. Typical Reverse Characteristics

Figure 4. Maximum Reverse Characteristics

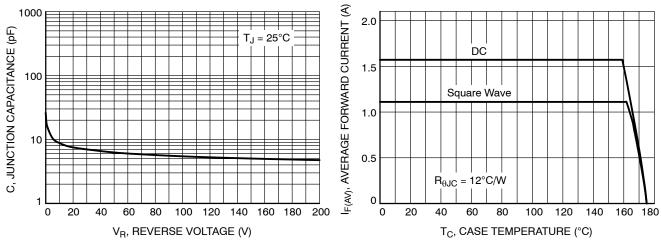


Figure 5. Typical Junction Capacitance

Figure 6. Current Derating

NHPM120, NRVHPM120

TYPICAL CHARACTERISTICS (continued)

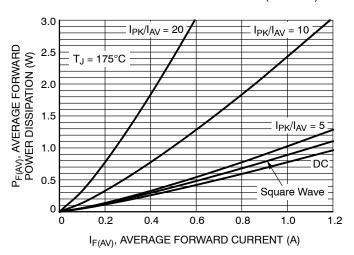


Figure 7. Forward Power Dissipation

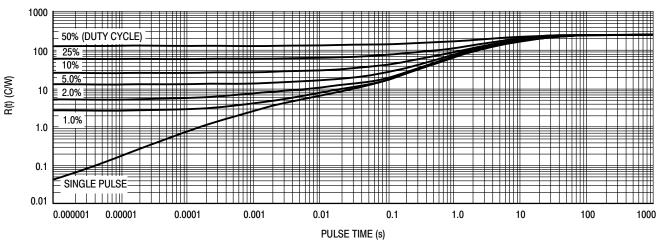
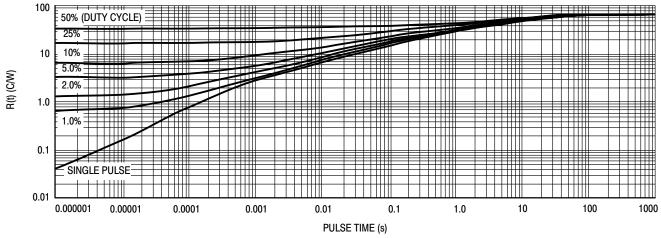
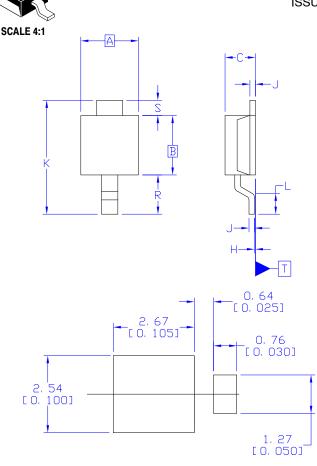


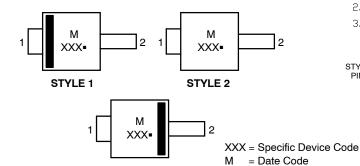
Figure 8. Thermal Response, Junction-to-Ambient (20 mm² pad)




Figure 9. Thermal Response, Junction-to-Ambient (1 in² pad)

POWERMITE is a registered trademarks of and used under a license from Microsemi Corporation.

DATE 12 JAN 2022


RECOMMENDED MOUNTING FOOTPRINT

◆ 0, 08 (0, 003) M T BS CS

◆ 0.08 (0.003) M T BS CS

	MILLIMETERS		INC	HES
DIM	MIN.	MAX.	MIN.	MAX.
А	1. 75	2, 05	0, 069	0. 081
В	1. 75	2. 18	0, 069	0, 086
С	0. 85	1. 15	0. 033	0. 045
D	0. 40	0. 69	0. 016	0. 027
F	0. 70	1. 00	0. 028	0. 039
Н	-0. 05	0. 10	-0. 002	0. 004
J	0.10	0, 25	0. 004	0.010
К	3, 60	3, 90	0.142	0. 154
L	0, 50	0, 80	0, 020	0. 031
R	1. 20	1, 50	0. 047	0. 059
S	0, 50 REF		0.019 REF	

GENERIC MARKING DIAGRAMS*

STYLE 3

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS 2.
- DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN O. 15 AND O. 30mm FROM THE TERMINAL TIP.

STYLE 1: PIN 1. CATHODE 2. ANODE

STYLE 2: PIN 1. ANODE OR CATHODE STYLE 3: PIN 1. ANODE 2. CATHODE

2. CATHODE OR ANODE (BI-DIRECTIONAL)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

= Pb-Free Package Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DOCUMENT NUMBER:** 98ASB14853C **DESCRIPTION: POWERMITE** PAGE 1 OF 1

onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales