N-Channel Power MOSFET 600 V, 8.5 Ω

Features

- 100% Avalanche Tested
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

ABSOLUTE MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	NDD	NDT	Unit
Drain-to-Source Voltage	V _{DSS}	60	600	
Continuous Drain Current $R_{\theta JC}$ Steady State, T_C = 25°C (Note 1)	Ι _D	1.5	0.4	Α
Continuous Drain Current $R_{\theta JC}$ Steady State, T_C = 100°C (Note 1)	Ι _D	1.0	0.25	Α
Pulsed Drain Current, t _p = 10 μs	I _{DM}	6.0	1.5	Α
Power Dissipation $-R_{\theta JC}$ Steady State, $T_C = 25^{\circ}C$	P_{D}	46	2.5	W
Gate-to-Source Voltage	V _{GS}	±30		V
Single Pulse Drain-to-Source Avalanche Energy (I _{PK} = 1.0 A)	EAS	13		mJ
Peak Diode Recovery (Note 2)	dv/dt	4	.5	V/ns
Source Current (Body Diode)	Is	1.5	0.4	Α
Lead Temperature for Soldering Leads	TL	260		°C
Operating Junction and Storage Temperature	T _J , T _{STG}	–55 to	+150	°C

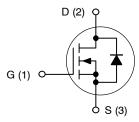
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. Limited by maximum junction temperature
- 2. $I_S = 1.5 \text{ A}, \text{ di/dt} \le 100 \text{ A/}\mu\text{s}, V_{DD} \le BV_{DSS}$

THERMAL RESISTANCE

Para	Symbol	Value	Unit	
Junction-to-Case (Dra	$R_{\theta JC}$	2.7	°C/W	
Junction-to-Ambient	(Note 4) NDD01N60 (Note 3) NDD01N60-1 (Note 4) NDT01N60 (Note 5) NDT01N60	$R_{ hetaJA}$	38 96 58 141	°C/W

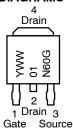
- 3. Insertion mounted.
- 4. Surface-mounted on FR4 board using 1" sq. pad size (Cu area = 1.127" sq. [2 oz] including traces).
- 5. Surface-mounted on FR4 board using minimum recommended pad size (Cu area = 0.026" sq. [2 oz]).



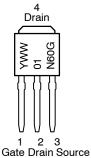
ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX		
600 V	8.5 Ω @ 10 V		

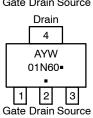

N-Channel MOSFET

MARKING DIAGRAMS


DPAK CASE 369C STYLE 2

IPAK CASE 369D STYLE 2

= Year WW = Work Week = Pb-Free Package



W

SOT-223 **CASE 318E** STYLE 3

= Assembly Location Υ = Year

= Work Week 01N60 = Specific Device Code = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_{.1} = 25°C unless otherwise noted)

Characteristic	Symbol	Test Condition	ıs	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 1	mA	600			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	Reference to 25°C, I _D = 1 mA			660		mV/°C
Drain-to-Source Leakage Current	I _{DSS}	V _{DS} = 600 V, V _{GS} = 0 V	T _J = 25°C			1	μΑ
			T _J = 125°C			50	
Gate-to-Source Leakage Current	I _{GSS}	V _{GS} = ±20 V				±100	nA
ON CHARACTERISTICS (Note 6)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{DS} = V_{GS}$, $I_D = 50 \mu A$		2.2	3.3	3.7	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				7.0		mV/°C
Static Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 0	.2 A		8.0	8.5	Ω
Forward Transconductance	9FS	V _{DS} = 15 V, I _D = 0.2 A			0.9		S
CHARGES, CAPACITANCES & GATE R	ESISTANCES						
Input Capacitance (Note 7)	C _{iss}	V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz			160		pF
Output Capacitance (Note 7)	C _{oss}				22]
Reverse Transfer Capacitance (Note 7)	C _{rss}				4.0		
Total Gate Charge (Note 7)	Qg				7.2		nC
Gate-to-Source Charge (Note 7)	Q_{gs}	\\			1.2		
Gate-to-Drain Charge (Note 7)	Q_{gd}	$V_{DS} = 300 \text{ V}, I_D = 0.4 \text{ A}, V_{DS} = 0.4 \text{ A}$	V _{GS} = 10 V		3.1		1
Plateau Voltage	V_{GP}				4.5		V
Gate Resistance	R_g				6.7		Ω
SWITCHING CHARACTERISTICS (Note	8)						
Turn-on Delay Time	t _{d(on)}				8.0		ns
Rise Time	t _r	V _{DD} = 300 V, I _D = 0	.4 A,		5.1		
Turn-off Delay Time	t _{d(off)}	$V_{DD} = 300 \text{ V}, I_D = 0$ $V_{GS} = 10 \text{ V}, R_G = 0$	0 Ω		16.5		
Fall Time	t _f				21.3		
DRAIN-SOURCE DIODE CHARACTERI	STICS						
Diode Forward Voltage	V_{SD}		T _J = 25°C		0.78	1.6	V
	$I_S = 0.4 \text{ A}, V_{GS} = 0 \text{ V}$ $T_J = 125^{\circ}0$		T _J = 125°C		0.63		1
Reverse Recovery Time	t _{rr}		•		179		ns
Charge Time	ta	V _{GS} = 0 V, V _{DD} = 3	30 V		37		1
Discharge Time	t _b	$I_S = 1.0 \text{ A}, d_i/d_t = 10$	0 A/μs		141		1
Reverse Recovery Charge	Q _{rr}				288		nC

- 6. Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 7. Guaranteed by design.
- 8. Switching characteristics are independent of operating junction temperatures.

ORDERING INFORMATION

Device	Package	Shipping [†]
NDD01N60-1G	IPAK (Pb-Free, Halogen-Free)	75 Units / Rail
NDD01N60T4G	DPAK (Pb-Free, Halogen-Free)	2500 / Tape & Reel
NDT01N60T1G	SOT-223 (Pb-Free, Halogen-Free)	1000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL CHARACTERISTICS

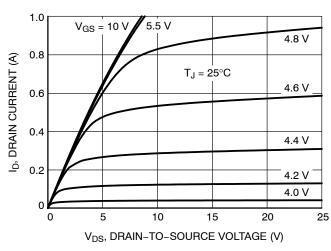


Figure 1. On-Region Characteristics

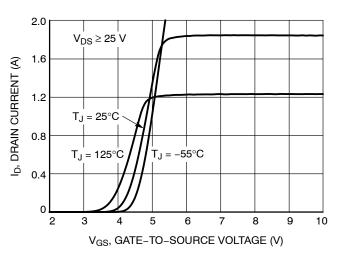


Figure 2. Transfer Characteristics

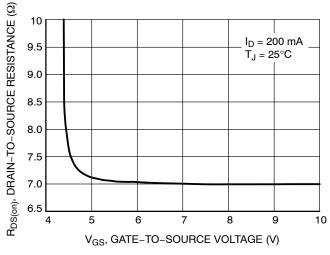


Figure 3. On-Resistance vs. Gate Voltage



Figure 4. On-Resistance vs. Drain Current and Gate Voltage

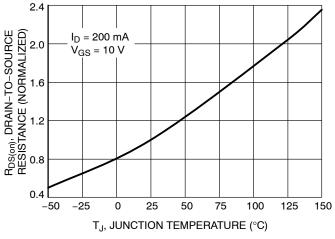


Figure 5. On–Resistance Variation with Temperature

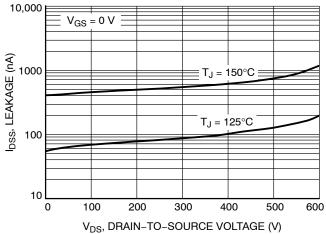


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

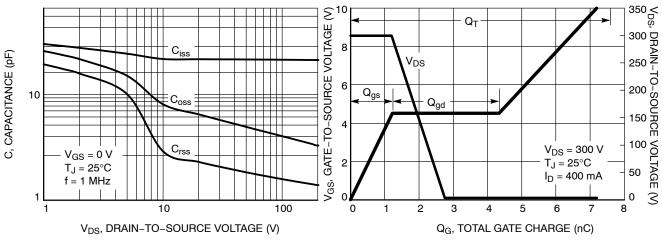


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

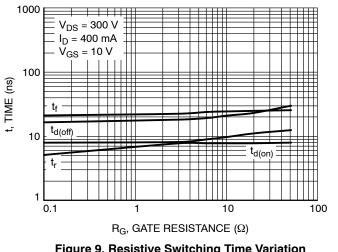


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

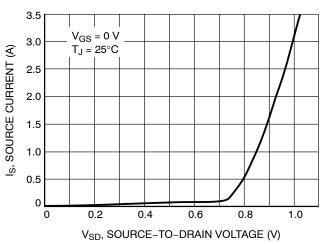


Figure 10. Diode Forward Voltage vs. Current

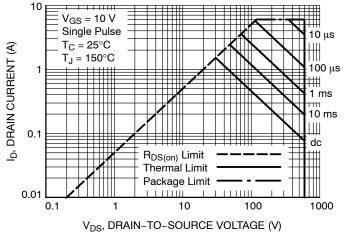


Figure 11. Maximum Rated Forward Biased Safe Operating Area NDD01N60

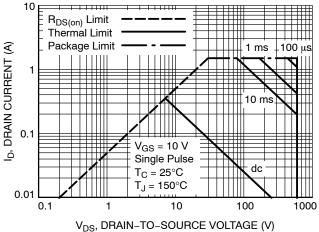


Figure 12. Maximum Rated Forward Biased Safe Operating Area NDT01N60

TYPICAL CHARACTERISTICS

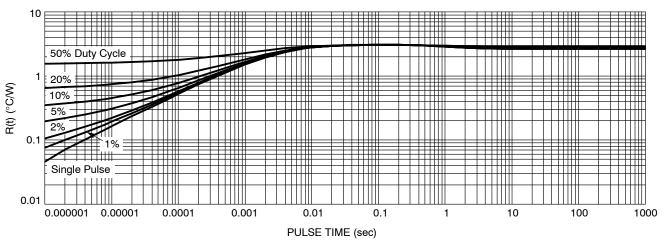
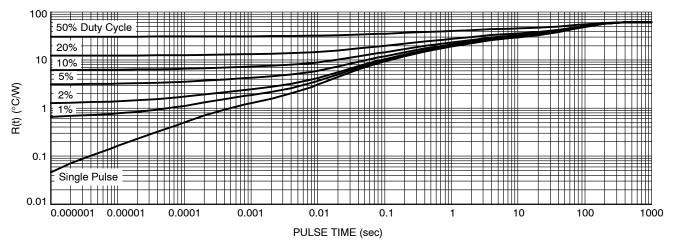
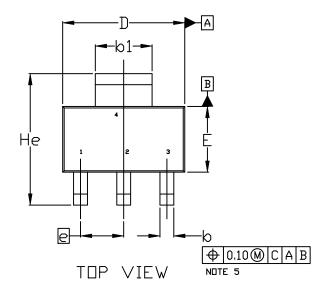
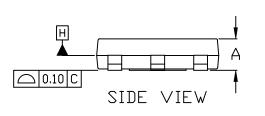
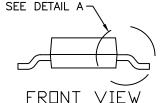


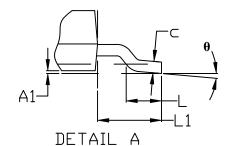
Figure 13. Thermal Impedance (Junction-to-Case) for NDD01N60



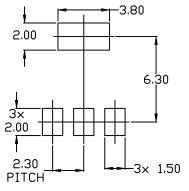

Figure 14. Thermal Impedance (Junction-to-Ambient) for NDT01N60






SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018



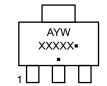
NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
 MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.200MM PER SIDE.
- 4. DATUMS A AND B ARE DETERMINED AT DATUM H.
- 5. AI IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.
- 6. POSITIONAL TOLERANCE APPLIES TO DIMENSIONS 6 AND 61.

	MILLIMETERS				
DIM	MIN.	N□M.	MAX.		
Α	1.50	1.63	1.75		
A1	0.02	0.06	0.10		
Ø	0.60	0.75	0.89		
b1	2.90	3.06	3.20		
U	0.24	0.29	0.35		
D	6.30	6.50	6.70		
Е	3.30	3.50	3.70		
е	2.30 BSC				
L	0.20				
L1	1.50	1.75	2.00		
He	6.70	7.00	7.30		
θ	0°		10°		

RECOMMENDED MOUNTING FOOTPRINT

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOT-223 (TO-261)		PAGE 1 OF 2		


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR	STYLE 2: PIN 1. ANODE 2. CATHODE 3. NC 4. CATHODE	STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN	STYLE 4: PIN 1. SOURCE 2. DRAIN 3. GATE 4. DRAIN	STYLE 5: PIN 1. DRAIN 2. GATE 3. SOURCE 4. GATE
STYLE 6: PIN 1. RETURN 2. INPUT 3. OUTPUT 4. INPUT	STYLE 7: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 4. CATHODE	STYLE 8: CANCELLED	STYLE 9: PIN 1. INPUT 2. GROUND 3. LOGIC 4. GROUND	STYLE 10: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE
STYLE 11: PIN 1. MT 1 2. MT 2 3. GATE 4. MT 2	STYLE 12: PIN 1. INPUT 2. OUTPUT 3. NC 4. OUTPUT	STYLE 13: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR		

GENERIC MARKING DIAGRAM*

A = Assembly Location

Y = Year W = Work Week

XXXXX = Specific Device Code

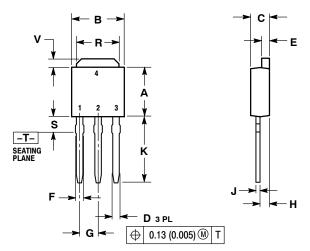
= Pb-Free Package

(Note: Microdot may be in either location) *This information is generic. Please refer to

device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOT-223 (TO-261)		PAGE 2 OF 2			

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.



DPAK INSERTION MOUNT

CASE 369 ISSUE O

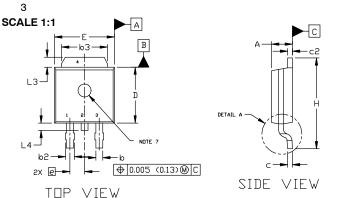
DATE 02 JAN 2000

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.250	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
E	0.033	0.040	0.84	1.01
F	0.037	0.047	0.94	1.19
G	0.090	BSC	2.29	BSC
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.350	0.380	8.89	9.65
R	0.175	0.215	4.45	5.46
S	0.050	0.090	1.27	2.28
v	0.030	0.050	0.77	1 27

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:		STYLE 5:		STYLE 6:	
PIN 1.	BASE	PIN 1.	GATE	PIN 1.	ANODE	PIN 1.	CATHODE	PIN 1.	GATE	PIN 1.	MT1
2.	COLLECTOR	2.	DRAIN	2.	CATHODE	2.	ANODE	2.	ANODE	2.	MT2
3.	EMITTER	3.	SOURCE	3.	ANODE	3.	GATE	3.	CATHODE	3.	GATE
4.	COLLECTOR	4.	DRAIN	4.	CATHODE	4.	ANODE	4.	ANODE	4.	MT2

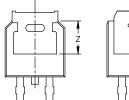
DOCUMENT NUMBER:	98ASB42319B	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	DPAK INSERTION MOUNT		PAGE 1 OF 1		

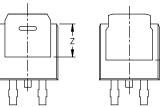

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DPAK (SINGLE GAUGE)

CASE 369C **ISSUE G**

DATE 31 MAY 2023




- DIMENSIONING AND TOLERANCING ASME Y14.5M, 1994. CONTROLLING DIMENSION: INCHES
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS 63,
- L3. AND Z. L3, AND Z.

 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,
 PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR
 GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 DIMENSIONS D AND E ARE DETERMINED AT THE
 OUTERMOST EXTREMES OF THE PLASTIC BODY.
 DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
 DETININAL MOLD ESCALUPE.

- OPTIONAL MOLD FEATURE.

ואוזת	MITAL		MILLIMETERS	
DIM	MIN.	MAX.	MIN.	MAX.
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b3	0.180	0.215	4.57	5.46
_	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
e	0.090 BSC		2.29 BSC	
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.114 REF		2.90 REF	
L2	0.020 BSC		0.51 BSC	
L3	0.035	0.050	0.89	1.27
L4		0.040	-	1.01
Z	0.155		3.93	

BOTTOM VIEW

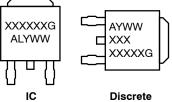
2.58

[0.102]

1.60

5.80

BOTTOM VIEW AL TERNATE


CONSTRUCTIONS [0.228] 6.20 -L2 GAUGE PLANE [0.244] 3.00 FN 1181 DETAIL A ROTATED 90° [0.063]

С

CW

GENERIC MARKING DIAGRAM*

XXXXXX	= Device Code
XXXXXX	= Device Code
Α	= Assembly Location
L	= Wafer Lot
Υ	= Year
WW	= Work Week
G	= Pb-Free Package

[0.243] RECOMMENDED MOUNTING FOOTPRINT*

6.17

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DUWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

STYLE 1:	STYLE 2:
PIN 1. BASE	PIN 1. GATE
COLLECTOR	DRAIN
3 FMITTER	3 SOURCE

STYLE 7: PIN 1. GATE 2. COLLECTOR

3 FMITTER

4. COLLECTOR

STYLE 3: PIN 1. ANODE 2. CATHODE 3 SOURCE 3 ANODE 4. DRAIN 4. CATHODE

STYLE 8:

STYLE 4: PIN 1. CATHODE 2. ANODE 3 GATE 4. ANODE

3 RESISTOR ADJUST

CATHODE

STYLE 9:

PIN 1. ANODE 2. CATHODE

STYLE 5: PIN 1. GATE 2. ANODE 3 CATHODE ANODE

STYLE 10: PIN 1. CATHODE 2. ANODE 3. CATHODE

4. ANODE

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:

4. COLLECTOR

STYLE 6:

PIN 1. MT1 2. MT2

3 GATE

98AON10527D

PIN 1. N/C 2. CATHODE 3. ANODE

4. CATHODE

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

DESCRIPTION:

DPAK (SINGLE GAUGE)

PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales